Что лучше газо или пенобетон: Газобетон или пенобетон в чем разница

Содержание

Газобетон или пенобетон в чем разница

Прежде чем строить дом, надо решить, из чего же его строить. Именно выбранный материал определяет, насколько крепким и комфортабельным получится жилище. Хорошие стены и тепло не отдадут на улицу, и постороннему шуму не позволят в комнаты проникнуть. А еще они должны быть экологичными и пожаробезопасными. Сейчас на пике популярности легкие и прочные ячеистые материалы для стен. Нередко застройщик долго раздумывает, что купить: газобетон или пенобетон — в чем разница между ними. На первый взгляд, ее и нет вовсе. А давайте-ка приглядимся повнимательнее.

Разбираемся в терминологии

Ячеистыми бетонами называют материалы на цементной основе облегченного типа. Их особенностью является наличие многочисленных ячеек, благодаря чему материал приобретает множество полезных свойств – как физических, так и механических. Ячеистый бетон имеет несколько разновидностей. Кроме уже упомянутых выше пенобетона и газобетона, существует, например, и газозолобетон. Пористый бетон может быть автоклавным и неавтоклавным.

По способу образования этих ячеек выделяют такие материалы как:

  • Газобетон;
  • Пенобетон;
  • Газопенобетон.

По способу затвердевания пористые бетоны делятся на:

  • Автоклавный метод подразумевает твердение материала при повышенном давлении в герметичном резервуаре, в который добавлены насыщенные водяные пары.
  • Неавтоклавный метод предполагает, что материал твердеет в естественной среде. При этом он прогревается с помощью электричества. Возможна также обработка бетона насыщенным водяным паром. Но, в отличие от предыдущего метода, давление не повышается.

Пенобетон и газобетон достаточно существенно отличаются друг от друга. У них и состав различный, и характеристики. И в эксплуатации оба материала проявляют себя совершенно по-разному.

Особенности производства пеноблоков и газоблоков

1. Чтобы сделать пенобетон, перемешивают цементную основу со специальными добавками. Они необходимы для вспенивания массы. Данные пенообразователи бывают как на основе синтетических веществ, так и органическими. Вспененная масса попадает в специальные формы, где и твердеет в естественной среде. В итоге получаются пенобетонные блоки. Материал, называемый монолитным, заливают не в формы, а в опалубку. После застывания съемную опалубку разбирают. Несъемная опалубка остается на месте.

Структура пенобетона.

2. Имеется существенная разница между пенобетоном и газобетоном, изготовленным автоклавным методом. Последний, в отличие от пенобетона, можно изготовить лишь в производственных условиях. Для того чтобы он вспенился, не нужны особые химические добавки. Газобетон состоит из натуральных веществ — воды, цемента, извести и гипса. Также в него добавляется некоторое количество алюминия – в виде пудры или пасты. Именно это вещество способствует газообразованию.

Изготавливают газобетон в особой емкости – автоклаве. Для придания материалу прочности его подвергают воздействию высокого давления и температуры, а также водяного пара. В процессе производства происходит химическая реакция между компонентами, и образуется вещество с новыми свойствами. А его кристаллическая решетка похожа на решетки некоторых органических веществ. Это, например, силикаты кальция, в частности, тоберморит. Химическая реакция сопровождается выделением водорода – именно этот газ делает материал пористым и заполняет эти самые поры.

Структура газобетона.

Когда газобетон окончательно затвердевает, приходит время разрезать его на аккуратные одинаковые блоки. Для этого используются струны, которые обеспечивают практически идеальный ровный разрез. Благодаря этому при укладке блоков из газобетона швы получаются очень тоненькими. Так что мостиков холода, через которые может уходить на улицу много тепла, удается избежать.

Сравним характеристики пенобетона и газобетона

ГОСТы для изготовления и того, и другого материала одни и те же. Не допускается отклонения от них. Казалось бы, и характеристики обоих пористых бетонов должны совпадать. На самом деле отличия существуют.

Впитывание влаги и морозостойкость

Отличие технологий изготовления влияет на эти два параметра. Так, газобетон вбирает в себя воду, как губка. Из-за этого во время морозов он себя проявляет не лучшим образом. У пенобетона водопоглощение гораздо ниже. Но следует помнить, что обычно стены из ячеистых материалов не оставляют «как есть» — их покрывают защитным слоем. Это может быть штукатурка, сайдинг или плиточная облицовка. Так что на практике можно не учитывать разницу в водопоглощении. Но можете знать, что газобетон здесь проигрывает.

Что прочнее

Плотность обеих пористых бетонов может варьироваться от 300 до 1200 килограммов на кубический метр. Если провести сравнение газобетона и пенобетона одинаковой плотности, то окажется, что последний менее надежен и крепок. Кроме того, прочность этого материала напрямую зависит от качества пенообразующих веществ. Так как хороший пенообразователь имеет высокую цену, некоторые изготовители хитрят и заменяют его на более дешевый. Прочность пенобетона нестабильна и по всей поверхности блока. А вот газобетонный блок однороден и одинаково себя проявляет во всех точках.

Экологическая безопасность

В процессе производства автоклавного газобетона происходит реакция между известью и алюминием. Выделяемый в результате водород далеко не весь выходит во время отвердевания материала. Часть этого газа (впрочем, совсем немного) может выходить и во время строительства, и потом, когда стены дома уже сложены.

Но водород не относится к ядовитым газам, поэтому отравляющего воздействия на организм человека он не производит. Образующие пенобетон вспениватели, как белковые, так и искусственные, тоже вредных веществ не содержат. Кроме того, поры у пенобетона замкнуты и герметичны. Получается оба данных материала не имеют существенных недостатков в экологическом плане и этот параметр не может быть определяющим в выборе того или иного материала.

Какой материал более подвержен усадке

В стене, выложенной из пенобетонных блоков, могут возникнуть трещины. Ведь показатель усадки у этого материала составляет от 1 до 3 мм/м. Газобетонные блоки практически не трескаются, так как аналогичный параметр у них – не более 0,5 мм/м.

Способность удерживать тепло

Чем более плотной является структура ячеистого бетона, тем хуже его теплоизоляционная способность. Поэтому пенобетон, обладающий небольшой плотностью – лучшим теплоизолятором чем газобетон. Но несущие стены из него не выложить – недостаточно прочен. Поэтому приходится использовать более плотный материал, но стены делать толще, потому как теплопроводность его выше. К примеру, для Новосибирска стены дома из пенобетонных блоков D600 должны быть не тоньше 65 сантиметров. Тогда в доме будет достаточно тепло.

Если же при таких же условиях класть стены из газобетона, то они получатся не толще, чем 45 или 50 сантиметров. Да и плотность при этом будет достаточна D 400 или D 500. Как видите, газобетон гораздо лучше способен удерживать тепло, а стена из него получается легче и прочнее. Впрочем, газобетон или пенобетон использовать для своего дома, решать вам.

Огнестойкость

Оба материала хорошо себя проявляют в этом отношении. А еще данные ячеистые бетоны неплохо пропускают воздух, а также имеют в своем составе только вещества естественного происхождения. Они легкие и удобные в эксплуатации. Что касается устойчивости к морозу, то газобетон в этом плане надежнее вдвое, а порой и втрое.

Сравниваем стоимость

Пенобетон существенно дешевле – примерно процентов на 20. Ведь компоненты для его изготовления не очень дорогие, а оборудование не является сложным. Но при строительстве его может понадобиться больше, чем газобетона. Поэтому не стоит смотреть только на цену кубометра материала – сначала весь проект будущего дома просчитайте.

Важно и то, что газобетон укладывают на клеевую смесь, а для пеноблоков и недорогой цементный раствор вполне подходит. Правда, с клеем укладка проходит быстрее, и понадобится его намного меньше, чем цементной смеси. В итоге получается, что стоимость укладки пеноблоков (включая все материалы) превышает затраты на укладку газоблоков. Кроме того, тонкий слой клея, в отличие от цемента, не дает мостиков холода. В итоге дом получается более энергосберегающим.

Сравниваем размеры

Так как блоки из газобетона изготавливаются в заводских условиях, то их размеры более стабильны, чем у пеноблоков. Ведь пенобетон делать можно прямо на стройплощадке – при помощи специальных установок. В результате и расход материалов для укладки, и удобство самой кладки у обоих ячеистых бетонов отличаются. Но это отнюдь не говорит о том, что газобетон – победитель по всем пунктам.

Надеемся, что это сравнение преимуществ и недостатков пенобетона или газобетона было своевременным и оказало вам помощи. Удачи в строительстве!

Если вы заметили ошибку, не рабочее видео или ссылку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

аналитика, советы, помощь с выбором материалов.

[Error] 
Maximum function nesting level of '256' reached, aborting! (0)
/home/bitrix/www/bitrix/modules/main/lib/config/option.php:430
#0: Bitrix\Main\Config\Option::getDefaultSite()
	/home/bitrix/www/bitrix/modules/main/lib/config/option.php:43
#1: Bitrix\Main\Config\Option::get(string, string, string, boolean)
	/home/bitrix/www/bitrix/modules/main/classes/general/option.php:30
#2: CAllOption::GetOptionString(string, string, string)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:2699
#3: CAllMain->get_cookie(string)
	/home/bitrix/www/bitrix/modules/main/lib/composite/engine.php:1321
#4: Bitrix\Main\Composite\Engine::onEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:480
#5: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/tools.php:3880
#6: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#7: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#8: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#9: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#10: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#11: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#12: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#13: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#14: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#15: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#16: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#17: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#18: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#19: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#20: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#21: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#22: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#23: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#24: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#25: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#26: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#27: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#28: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#29: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#30: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#31: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#32: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#33: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#34: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#35: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#36: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#37: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#38: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#39: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#40: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#41: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#42: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#43: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#44: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#45: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#46: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#47: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#48: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#49: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#50: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#51: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#52: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#53: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#54: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#55: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#56: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#57: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#58: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#59: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#60: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#61: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#62: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#63: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#64: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#65: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#66: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#67: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#68: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#69: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#70: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#71: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#72: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#73: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#74: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#75: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#76: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#77: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#78: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#79: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#80: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#81: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#82: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#83: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#84: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#85: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#86: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#87: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#88: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#89: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#90: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#91: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#92: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#93: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#94: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#95: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#96: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#97: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#98: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#99: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#100: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#101: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#102: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#103: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#104: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#105: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#106: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#107: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#108: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#109: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#110: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#111: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#112: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#113: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#114: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#115: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#116: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#117: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#118: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#119: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#120: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#121: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#122: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#123: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#124: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#125: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#126: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#127: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#128: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#129: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#130: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#131: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#132: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#133: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#134: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#135: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#136: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#137: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#138: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#139: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#140: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#141: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#142: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#143: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#144: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#145: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#146: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#147: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#148: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#149: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#150: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#151: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#152: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#153: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#154: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#155: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#156: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#157: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#158: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#159: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#160: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#161: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#162: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#163: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#164: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#165: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#166: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#167: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#168: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#169: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#170: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#171: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#172: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#173: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#174: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#175: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#176: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#177: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#178: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#179: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#180: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#181: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#182: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#183: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#184: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#185: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#186: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#187: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#188: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#189: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#190: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#191: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#192: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#193: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#194: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#195: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#196: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#197: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#198: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#199: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#200: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#201: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#202: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#203: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#204: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#205: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#206: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#207: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#208: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#209: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#210: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#211: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#212: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#213: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#214: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#215: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#216: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#217: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#218: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#219: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#220: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#221: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#222: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#223: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#224: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#225: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#226: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#227: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#228: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#229: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#230: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#231: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#232: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#233: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#234: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#235: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#236: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#237: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#238: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#239: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#240: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#241: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#242: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#243: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3465
#244: CAllMain::FinalActions(string)
	/home/bitrix/www/bitrix/modules/main/include/epilog_after.php:54
#245: require(string)
	/home/bitrix/www/bitrix/modules/main/include/epilog.php:3
#246: require_once(string)
	/home/bitrix/www/bitrix/footer.php:4
#247: require(string)
	/home/bitrix/www/404.php:53
#248: require(string)
	/home/bitrix/www/bitrix/modules/iblock/lib/component/tools. php:66
#249: Bitrix\Iblock\Component\Tools::process404(string, boolean, boolean, boolean, string)
	/home/bitrix/www/bitrix/components/bitrix/news/component.php:145
#250: include(string)
	/home/bitrix/www/bitrix/modules/main/classes/general/component.php:605
#251: CBitrixComponent->__includeComponent()
	/home/bitrix/www/bitrix/modules/main/classes/general/component.php:680
#252: CBitrixComponent->includeComponent(string, array, boolean, boolean)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:1039
#253: CAllMain->IncludeComponent(string, string, array, boolean)
	/home/bitrix/www/articles/index.php:133
#254: include_once(string)
	/home/bitrix/www/bitrix/modules/main/include/urlrewrite.php:159
#255: include_once(string)
	/home/bitrix/www/bitrix/urlrewrite.php:2

аналитика, советы, помощь с выбором материалов.

[Error] 
Maximum function nesting level of '256' reached, aborting! (0)
/home/bitrix/www/bitrix/modules/main/lib/config/option.php:430
#0: Bitrix\Main\Config\Option::getDefaultSite()
	/home/bitrix/www/bitrix/modules/main/lib/config/option. php:43
#1: Bitrix\Main\Config\Option::get(string, string, string, boolean)
	/home/bitrix/www/bitrix/modules/main/classes/general/option.php:30
#2: CAllOption::GetOptionString(string, string, string)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:2699
#3: CAllMain->get_cookie(string)
	/home/bitrix/www/bitrix/modules/main/lib/composite/engine.php:1321
#4: Bitrix\Main\Composite\Engine::onEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:480
#5: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/tools.php:3880
#6: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#7: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#8: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#9: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#10: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application. php:174
#11: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#12: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#13: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#14: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#15: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#16: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#17: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#18: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#19: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#20: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#21: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#22: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#23: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#24: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#25: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#26: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#27: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#28: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#29: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#30: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#31: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#32: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#33: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#34: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#35: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#36: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#37: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#38: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#39: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#40: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#41: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#42: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#43: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#44: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#45: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#46: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#47: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#48: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#49: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#50: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#51: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#52: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#53: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#54: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#55: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#56: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#57: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#58: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#59: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#60: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#61: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#62: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#63: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#64: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#65: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#66: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#67: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#68: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#69: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#70: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#71: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#72: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#73: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#74: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#75: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#76: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#77: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#78: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#79: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#80: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#81: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#82: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#83: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#84: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#85: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#86: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#87: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#88: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#89: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#90: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#91: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#92: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#93: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#94: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#95: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#96: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#97: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#98: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#99: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#100: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#101: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#102: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#103: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#104: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#105: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#106: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#107: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#108: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#109: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#110: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#111: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#112: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#113: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#114: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#115: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#116: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#117: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#118: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#119: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#120: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#121: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#122: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#123: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#124: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#125: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#126: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#127: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#128: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#129: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#130: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#131: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#132: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#133: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#134: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#135: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#136: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#137: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#138: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#139: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#140: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#141: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#142: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#143: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#144: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#145: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#146: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#147: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#148: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#149: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#150: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#151: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#152: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#153: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#154: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#155: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#156: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#157: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#158: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#159: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#160: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#161: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#162: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#163: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#164: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#165: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#166: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#167: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#168: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#169: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#170: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#171: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#172: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#173: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#174: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#175: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#176: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#177: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#178: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#179: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#180: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#181: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#182: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#183: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#184: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#185: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#186: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#187: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#188: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#189: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#190: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#191: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#192: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#193: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#194: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#195: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#196: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#197: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#198: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#199: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#200: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#201: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#202: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#203: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#204: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#205: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#206: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#207: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#208: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#209: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#210: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#211: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#212: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#213: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#214: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#215: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#216: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#217: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#218: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#219: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#220: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#221: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#222: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#223: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#224: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#225: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#226: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#227: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#228: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#229: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#230: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#231: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#232: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#233: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#234: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#235: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#236: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#237: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#238: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#239: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#240: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#241: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#242: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#243: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3465
#244: CAllMain::FinalActions(string)
	/home/bitrix/www/bitrix/modules/main/include/epilog_after.php:54
#245: require(string)
	/home/bitrix/www/bitrix/modules/main/include/epilog.php:3
#246: require_once(string)
	/home/bitrix/www/bitrix/footer.php:4
#247: require(string)
	/home/bitrix/www/404.php:53
#248: require(string)
	/home/bitrix/www/bitrix/modules/iblock/lib/component/tools.php:66
#249: Bitrix\Iblock\Component\Tools::process404(string, boolean, boolean, boolean, string)
	/home/bitrix/www/bitrix/components/bitrix/news/component.php:145
#250: include(string)
	/home/bitrix/www/bitrix/modules/main/classes/general/component.php:605
#251: CBitrixComponent->__includeComponent()
	/home/bitrix/www/bitrix/modules/main/classes/general/component.php:680
#252: CBitrixComponent->includeComponent(string, array, boolean, boolean)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:1039
#253: CAllMain->IncludeComponent(string, string, array, boolean)
	/home/bitrix/www/articles/index.php:133
#254: include_once(string)
	/home/bitrix/www/bitrix/modules/main/include/urlrewrite.php:159
#255: include_once(string)
	/home/bitrix/www/bitrix/urlrewrite.php:2

аналитика, советы, помощь с выбором материалов.

[Error] 
Maximum function nesting level of '256' reached, aborting! (0)
/home/bitrix/www/bitrix/modules/main/lib/config/option.php:430
#0: Bitrix\Main\Config\Option::getDefaultSite()
	/home/bitrix/www/bitrix/modules/main/lib/config/option.php:43
#1: Bitrix\Main\Config\Option::get(string, string, string, boolean)
	/home/bitrix/www/bitrix/modules/main/classes/general/option.php:30
#2: CAllOption::GetOptionString(string, string, string)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:2699
#3: CAllMain->get_cookie(string)
	/home/bitrix/www/bitrix/modules/main/lib/composite/engine.php:1321
#4: Bitrix\Main\Composite\Engine::onEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:480
#5: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/tools.php:3880
#6: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#7: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#8: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#9: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#10: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#11: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#12: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#13: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#14: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#15: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#16: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#17: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#18: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#19: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#20: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#21: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#22: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#23: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#24: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#25: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#26: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#27: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#28: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#29: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#30: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#31: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#32: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#33: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#34: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#35: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#36: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#37: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#38: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#39: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#40: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#41: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#42: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#43: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#44: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#45: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#46: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#47: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#48: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#49: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#50: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#51: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#52: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#53: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#54: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#55: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#56: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#57: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#58: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#59: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#60: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#61: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#62: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#63: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#64: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#65: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#66: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#67: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#68: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#69: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#70: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#71: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#72: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#73: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#74: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#75: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#76: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#77: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#78: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#79: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#80: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#81: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#82: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#83: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#84: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#85: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#86: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#87: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#88: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#89: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#90: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#91: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#92: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#93: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#94: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#95: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#96: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#97: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#98: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#99: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#100: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#101: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#102: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#103: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#104: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#105: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#106: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#107: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#108: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#109: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#110: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#111: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#112: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#113: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#114: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#115: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#116: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#117: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#118: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#119: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#120: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#121: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#122: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#123: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#124: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#125: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#126: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#127: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#128: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#129: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#130: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#131: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#132: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#133: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#134: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#135: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#136: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#137: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#138: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#139: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#140: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#141: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#142: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#143: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#144: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#145: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#146: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#147: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#148: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#149: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#150: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#151: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#152: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#153: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#154: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#155: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#156: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#157: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#158: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#159: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#160: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#161: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#162: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#163: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#164: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#165: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#166: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#167: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#168: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#169: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#170: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#171: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#172: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#173: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#174: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#175: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#176: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#177: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#178: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#179: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#180: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#181: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#182: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#183: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#184: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#185: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#186: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#187: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#188: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#189: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#190: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#191: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#192: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#193: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#194: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#195: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#196: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#197: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#198: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#199: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#200: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#201: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#202: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#203: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#204: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#205: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#206: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#207: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#208: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#209: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#210: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#211: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#212: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#213: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#214: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#215: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#216: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#217: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#218: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#219: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#220: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#221: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#222: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#223: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#224: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#225: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#226: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#227: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#228: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#229: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#230: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#231: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#232: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#233: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#234: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#235: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#236: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#237: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#238: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#239: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#240: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:644
#241: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#242: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#243: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3465
#244: CAllMain::FinalActions(string)
	/home/bitrix/www/bitrix/modules/main/include/epilog_after.php:54
#245: require(string)
	/home/bitrix/www/bitrix/modules/main/include/epilog.php:3
#246: require_once(string)
	/home/bitrix/www/bitrix/footer.php:4
#247: require(string)
	/home/bitrix/www/404.php:53
#248: require(string)
	/home/bitrix/www/bitrix/modules/iblock/lib/component/tools.php:66
#249: Bitrix\Iblock\Component\Tools::process404(string, boolean, boolean, boolean, string)
	/home/bitrix/www/bitrix/components/bitrix/news/component.php:145
#250: include(string)
	/home/bitrix/www/bitrix/modules/main/classes/general/component.php:605
#251: CBitrixComponent->__includeComponent()
	/home/bitrix/www/bitrix/modules/main/classes/general/component.php:680
#252: CBitrixComponent->includeComponent(string, array, boolean, boolean)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:1039
#253: CAllMain->IncludeComponent(string, string, array, boolean)
	/home/bitrix/www/articles/index.php:133
#254: include_once(string)
	/home/bitrix/www/bitrix/modules/main/include/urlrewrite.php:159
#255: include_once(string)
	/home/bitrix/www/bitrix/urlrewrite.php:2

Пенобетон или газобетон? Определяемся с выбором

Газобетон и пенобетон относятся к пористым видам строительных блоков. Во многом их характеристики схожи, однако существуют различия, которые необходимо учитывать, выбирая что лучше для строительства дома.

Преимущества и недостатки. Сравнительная таблица пенобетона и газобетона


























 

Газобетон

Пенобетон

Состав

Цемент, известь, вода, кварцевый песок, алюминиевая пудра

Портландцемент, известь, вода, кварцевый песок, смола древесная омыленная (СДО)

Технология изготовления

Плитой, которая после застывания нарезается на блоки

Отдельными блоками

Производство

Только на заводе, при помощи специального оборудования

Может быть изготовлен на строительной площадке или на небольших мини-заводах, возможно кустарное производство

Поры

Открытые, одинаковые по размеру, мелкие

Закрытые, разного размера, крупные

Поверхность

Белый цвет, рельефная шероховатая поверхность

Серый цвет, гладкая поверхность

Гигроскопичность

Высокая. Впитывает влагу не только при прямом контакте с ней, но и из воздуха. При работе распаковку материала из заводской упаковки следут делать по мере необходимости

Не впитывает влагу, подобен поплавку, долгое время будетдержаться на поверхности воды

Плотность

В пределах 300-1200 кг/ м3 (зависит от марки)

В пределах 300-1200 кг/ м3 (зависит от марки)

Вес

Зависит от марки

1 м3 D500=500 кг

Зависит от марки

1 м3 D500=500 кг

Прочность

Однородная по всему объему блока

Неоднородная

Прочность на сжатие для блока D500

В 2,5

В 1

Набор прочности

Максимальная плотность на ранних стадиях изготовления, в процессе эксплуатации снижается

Набирает прочность к 28 дню после изготовления и далее в процессе экплуатации этот показатель растет

Теплоизоляция

Высокая

Средняя

Распиливание

Легкое

Легкое

Требования к раствору

Лучше использовать специальный клей, чтобы сократить расходы и сделать тонкий шов

Можно производить монтаж на клей или цементно-песчаную смесь

Консервация, если возникла необходимость приостановить строительсво

Необходимо укрывать защитной пленкой, чтобы избежать намокания

Не боится намокания, но на длительный период лучше так же укрывать

Усадка

Не превышает 0,5 мм/м.п

В пределах 1-3 мм/м.п

Утепление

Гибкий утеплитель

Гибкий утеплитель

Внешняя отделка

Позволяющая сохранить способность блока «дышать»

Любая

Требования к штукатурной смеси

Рекомендуется использовать специальные смеси

Специальные смеси с хорошей адгезией к поверхности

Стоимость

Выше

На 20% ниже, по сравнению с газобетоном

Разнообразие элементов

Больше

Меньше

Точность размеров

Минимальная погрешность

Объективно существующие погрешности

Морозостойкость, циклов

F-25

F-30

Специфика производства газоблоков и пеноблоков

Для изготовления пенобетона применяют цементную смесь с добавленем специальных добавок (синтетических или органических), благодаря которым происходит вспенивание. Далее полученную массу заливают в формы, где она твердеет в естественных условиях.

Автоклавный газобетон может быть изготовлен только в заводских условиях. Для образования пористой структуры в смесь из воды, цемента, извести и гипса добаляют аллюминиевую пудру или пасту. Изготовление газобетона происходит в специальной емкости — автоклаве. Для того, чтобы материал стал прочным на него воздействуют водяным паром, давлением и высокой температурой (благодаря этому происходит химическая реакция и образуется новое вещество).

После затвердевания плиту газобетона разрезают на отдельные блоки специальной струной. Края блоков получаются очень ровными, благодаря чему швы в кладке из газобетона получаются тоненькими, таким образом мостиков холода удается избежать.


Фундамент для дома из пеноблоков или газоблоков

Основная особенность блоков — их пористость, является как преимуществом (конструкция облегченная), так и недостатком. Из-за хрупкости и низкого коэффициента прочности на сжатие, пеноблоки и газоблоки необходимо укладывать на надежный фундамент, чтобы избежать в последующем образование трещин в стенах.

Для оптимального выбора фундамента, расщет его ведут, исходя из параметров:


  • Уровень грунтовых вод

  • Глубина промерзания

  • Тип почвы

  • Пучинистость

  • Количество этажей

  • Сложность конструкции

Чаще всего используются ленточный фундамент, монолитная ж/б плита.

Размеры блоков пенобетона и газобетона

Благодаря более крупным форматам блоков из пено- и газобетона (по сравнению с кирпичом) процесс возмедения сооружений из них значительно ускоряется. Однако максимальный размер блока регламентируется ГОСТ: максимальный размер пеноблока составляет 625x500x500мм.

Самыми востребованными на рынке форматами являются:


  • Пеноблоки: длина 600 мм, высота 200 и 300 мм, толщина 100 мм (для перегородок), 200 и 300 мм.

  • Газоблоки: длина 600 и 625 мм, высота 200 и 250 мм, толщина 200 и 300 мм.

Главные плюсы и минусы пеноблоков и газоблоков

Плюсы общие:

  • Экологичность

  • Легкий вес

  • Высокая скорость возведения

  • Простота монтажа

  • Высокая теплоизоляция
Плюсы пеноблоков:

  • Огнестойкость

  • Хорошая шумоизаляция

  • Теплопроводность низкая

  • Срок службы более 30 лет

  • Морозостойкость до 30 циклов
Плюсы газоблоков:

  • Минимальная погрешность в размерах

  • Не дает усадки

  • Срок службы более 55 лет

  • Морозостойкость более 50 циклов

Минусы общие:

  • Из блоков газо- и пенобетона можно возводить только малоэтажные строения

  • Необходимость в укрытии материала во время храния для избежания воздействия окружающей среды

  • Требуется наружняя отделка

  • Необходимо заклыдывать капитальный дорогой фундамент

  • Хрупкость
Минусы пеноблоков:

  • Дают усадку

  • Из-за простоты производства высок риск купить некачественный материал

  • Кладку можно начинать не менее, чем через 28 дней после изготовления
Минусы газоблоков:

  • Не высокая шумоизоляция

  • Высокая гидроскапичность

  • Необходимость быстро работать во вмеря кладки, так как блоки быстро впитывают из клеевого раствора влагу

Пеноблоки или газоблоки — что лучше? В качестве заключения

Важно понимать, что любой строительный материал имеет свои преимущества и недостатки. Чаще всего негатив по поводу газобетона исходит из входящей в его состав алюминиевой пудры, поэтому считается, что лучше газобетонные блоки применять для нежилых строений (гаражи, хозяйственные постройки). Так же из-за высокой гигдроскопичности газоблоки не применяют для возведения внутренних перегородок в ванной комнаты, санузла, по той же причине из него не строят бани.

Для строительства частного дома часто применяют комбинацию газобетона (для внешних стен) и пеноблоков (для перегородок).

Отличие газобетона и пеноблока — в чем разница?


Газобетон отличается от пенобетона составом, способом производства и характеристиками. Оба материала являются ячеистыми бетонами, в которых поры занимают до 85% общего объема.


 Особенности пеноблока


Достоинство пенобетона – это возможность производства непосредственно на стройплощадке. Для создания пузырей в цемент добавляют органические и синтетические элементы. Затем смесь поступает в формы, где застывает при атмосферных условиях.


Чтобы изготовить монолитный пенобетон, вместо формы используют разборную или неразборную опалубку. Вторая остается на месте после схватывания смеси.

Характеристики пеноблока

  • возьмем за основу размер пеноблока – 200х300х625 мм;
  • масса одного блока – 22,6 кг;
  • плотность – от 300 до 1200 кг/м3;
  • влагопоглощение – 14%;
  • коэффициент теплопроводности – от 0,1 до 0,4 Вт/м*К;
  • степень морозостойкости – до 35 циклов;
  • прочность на сжатие – от 0,25 до 12,5 МПа;
  • расход – примерно 22-26 шт/м3.

Особенности газоблока


Автоклавный газобетон изготавливается исключительно на заводе из природного сырья: воды, цемента, кварцевого песка, негашеной извести (оксида кальция), гипса. Газообразователем служит алюминиевая паста, без применения химических добавок. Песок предварительно измельчается до состояния порошка.


Дозировка и перемешивание компонентов происходит в специальном сосуде – автоклаве. В результате взаимодействия алюминиевой пасты, извести и воды, происходит активное выделение водорода, который формирует поры. При этом объем смеси увеличивается в 2 раза.

Характеристики газоблока

  • размер блока – 200х300х625 мм;
  • масса одного блока – 19,26 кг;
  • плотность – от 300 до 1200 кг/м3;
  • показатель поглощения влаги – 20%;
  • коэффициент теплопроводности – от 0,1 до 0,4 Вт/м*К;
  • степень морозостойкости – до 35 циклов;
  • прочность на сжатие – от 0,5 до 25 МПа;
  • расход – примерно 22-26 шт/м3.


Предварительно затвердевший массив поступает в зону кантовки и резки. Резка осуществляется пневматическими струнами толщиной до 1 миллиметра. Это позволяет добиться идеально ровной поверхности по заданным типоразмерам. Одновременно с резкой происходит изготовление захватных карманов при помощи фрезера.


Далее газобетонные блоки поступают в автоклавную камеру на 12 часов – для полного высыхания. Под действием давления, температуры и водяного пара, материал приобретает требуемые свойства. Минимальная шероховатость поверхности упрощает кладку, а также сокращает попадание холодного воздуха в дом.

Сравнение пенобетона и газобетона


Изготовление данных материалов регламентируется одними ГОСТами (ГОСТ 31359 «Бетоны ячеистые автоклавного твердения. ТУ» и ГОСТ 31360 «Изделия стеновые не армированные из ячеистого бетона автоклавного твердения. ТУ»). Несмотря на единый стандарт, их технические параметры отличаются.

Влагопоглощение и устойчивость к морозу


Процент поглощения влаги у пенобетона несколько меньше. Однако кладку из пористых бетонов, как правило, покрывают защитным слоем в виде штукатурки, сайдинга, облицовки или декоративного камня. Поэтому в реальной жизни разница не играет большой роли.

Прочность ячеистого бетона


Плотность обоих материалов составляет 300 – 1200 кг/м3. Газобетон более крепкий по сравнению с пенобетоном. Прочность последнего во многом зависит от качества компонентов. Газоблок однородный по всей плоскости и лучше выдерживает сверление, штробление, забивание гвоздей.

Экологичность


При изготовлении газоблоков, известь вступает в химическую реакцию с алюминиевой пастой. Процесс сопровождается выделением водорода. Часть данного газа сохраняется в затвердевшем составе и выходит уже после возведения стен.


Водород не является токсичным веществом и не представляет угрозы здоровью человека. Также безопасны синтетические и белковые присадки, которые содержатся в пенобетоне. Герметичные поры надежно удерживают газ. Оба материала обладают одинаковыми экологическими свойствами.

Подверженность усадке


Усадка пеноблоков варьируется от 1 до 3 мм/м, тем временем у газобетона – менее 0,5 мм/м. Вероятность появления трещин в конструкции из газоблоков, значительно ниже, чем у постройки из пенобетона.

Теплопроводность


Теплоизоляционная способность пористого бетона обратно пропорциональна плотности структуры. Пеноблок с малой плотностью обладает лучшей теплоизоляцией по сравнению с газоблоком. Однако возводить опорные стены из него нельзя по причине недостаточной прочности. В такой ситуации используют более плотный бетон, одновременно увеличивая толщину кладки. Например, в Сибири толщина стен здания должна быть минимум 65 сантиметров (при использовании пеноблоков марки D600). Иначе в помещении будет холодно.


Толщина кладки из газоблоков при тех же условиях получится менее 50 сантиметров, без потери плотности. Как видим, газобетон эффективнее держит тепло. Кроме этого, конструкция обладает меньшим весом.

Пожаробезопасность


Оба материала устойчивы к воздействию огня, хорошо пропускают кислород и выполнены из природных элементов. Легкость позволяет ускорить монтажные работы. По морозостойкости газоблок превосходит пеноблок в несколько раз.

Стоимость блоков


Газобетон дороже пенобетона на 15-20% по причине высокой себестоимости изготовления. Однако на этапе строительства его может потребоваться меньше. Кроме того, вес пеноблоков больше, что увеличит транспортные расходы. Не стоит забывать про армирование и утепление фасада. Поэтому перед закупкой материала, необходимо выполнить оценку проекта.


На итоговую стоимость также влияет связующий раствор. Газоблоки укладывают на клей, в то время как для пеноблока подойдет недорогой цемент. Но во втором случае потребуется больше времени и сырья на его приготовление. Получается, что строительство из газобетона (вместе со всеми материалами) выгоднее. Помимо этого, тонкий клеевой слой сокращает риск проникновения холодного воздуха в жилое помещение.

Разница в габаритах блоков


Газоблоки обладают более точной геометрией благодаря заводскому оборудованию. Пеноблоки делают прямо на стройплощадке в специальных установках (баросмесителях, пеногенераторах, компрессорах). Все это влияет на расход материала, скорость и удобство работы.


Думаем, что детальное знакомство с пенобетоном и газобетоном было для вас полезным. Окончательный выбор зависит от назначения объекта и финансовых возможностей. Желаем успехов в строительстве!

Пенобетон или газобетон – что выбрать для строительства дома

В сегменте ячеистых бетонов конкурируют два популярных материала – пенобетон и газобетон. Планируя строительство дома, дачи, гаража или бани, каждый хозяин старается учесть все нюансы, предугадать различные ситуации, прикинуть стоимость, в общем, создать максимально реальный план, прежде чем приступить к работе.

Первая и важная задача – выбор материала для несущих стен. Из чего лучше строить дом, из пеноблока или газоблока? О каждом из них есть свои как положительные, так и отрицательные отзывы.

 

Пенобетон или газобетон – что лучше для строительства дома

Ячеистые бетоны – это группа строительных материалов, изготовленных из бетона и различных добавок, придающих ему пористую структуру. Наиболее известные представители этого вида – газобетон и пенобетон.

На первый взгляд это идентичные материалы. Однако есть и различия, формирующие отличительные свойства, которые и являются камнем преткновения между сторонниками и противниками этих материалов.

Чтобы сделать объективный вывод и правильный выбор предлагаем ознакомиться, чем отличается газоблок от пеноблока – сравнение по характеристикам, свойствам и цене. Для этого изучим все этапы жизненного цикла этих стеновых материалов, начиная с технологического процесса производства, заканчивая декоративной отделкой, т.е. проведем полный сравнительный анализ.

Рекомендуем материал по теме:

Плюсы и минусы домов из газобетона + отзывы владельцев

Плюсы и минусы домов из пенобетона + отзывы владельцев

а также

Преимущества и недостатки пенобетонных блоков + какой выбрать

 

Сравнение, что лучше: пеноблоки или газоблоки

1. Производство пенобетона и газобетона

Сравнение в рамках технологии изготовления (производства)

Состав

Оба материала производятся путем смешивания бетона с материалами, которые сообщают ему пористую структуру.

Но, при производстве пенобетона таким материалом (пенообразователь, пластификатор) выступает смола древесная омыленная (СДО), а газобетона – пылевидный алюминий.

Технология изготовления

Пенобетон производится в виде отдельных блоков. В связи с этим разновидность его типоразмеров и видов ограничена.

Газобетон изготавливается в массе, которая после застывания нарезается на блоки заданной величины и конфигурации. Таким образом, достигается большее геометрическое разнообразие элементов по габаритам.

Производство

Газоблок производится только в заводских условиях на специализированном оборудовании.

Пенобетон может изготавливаться и на небольших предприятиях (мини-заводы, установки, кустарное, частное производство).

Поры (ячейки)

Ввиду особенностей производства поры на внешней поверхности газобетонного блока остаются открытыми, что делает его похожим на губку. За сутки пребывания в воде газобетон набирает до 47% влаги. Т.е. становится тяжелее почти вдвое. материал незащищенным перед воздействием влаги или осадков. Если к этому прибавить мороз, то незащищенная стена из газобетона довольно быстро покроется сеткой мелких трещин, устранить которые можно разными способами.

Поры пенобетонного блока закрыты по всей массе. Это придает ему гидрофобные свойства. Пенобетон подобен поплавку – будет держаться на воде длительной время.

Как показывают тесты пользователей – выстоянный (набравший прочности) в течение месяца пенобетон (рекомендованное время) способен держаться на поверхности воды более месяца.

2. Характеристики пенобетона и газобетона

Параллельное сравнение в пределах свойств и характеристик материала

Размеры пор

Алюминиевая пудра или паста, распределяясь по газобетонной смеси позволяет получить одинаковые по своему размеру пузырьки – поры.

В пенобетоне поры разные по виду (объему). Материал подготовлен для сайта www.moydomik.net

Плотность

Одинаковая у пенобетона и газобетона, колеблется в пределах от 300 до 1200 кг/м.куб и зависит от марки. Например, марка D 500 обладает плотностью в 500 кг/м.куб при естественной влажности материала;

Вес (что тяжелее)

Вес ячеистых бетонов также зависит от марки. Например, 1 м.куб. материала марки D 500 будет весить 500 кг.

Прочность (что прочнее, крепче)

У газобетона одинаковая по всему объему блока, у пенобетона неоднородная, что обусловлено спецификой распределения пенообразующей добавки.

Кроме того, пенобетон и газобетон отличаются низкой прочностью на изгиб. Это выдвигает дополнительные требования к устройству фундамента и его способность обеспечить формостабильность дома (предотвратить неравномерную усадку).

Набор прочности

Газобетон имеет максимальную плотность (соответствует марке) на ранних стадиях изготовления. В процессе хранения газоблоков или эксплуатации строения она снижается.

Пенобетону же, нужно не менее 28 дней с момента производства, для того, чтобы выйти на заявленный показатель плотности. Это выдвигает особые условия к началу строительных работ.

Чтобы убедиться в том, что блок набрал прочность, его лучше приобрести заранее и хранить на месте строительства месяц. В противном случае, конструкция, построенная из свежеизготовленного пенобетона, даст существенную усадку. Стоит отметить, что пенобетон набирает прочность по мере эксплуатации. Т.е., чем старше блок или дом из пенобетона, тем он прочнее.

Размер (геометрия)

Благодаря тому, что газобетон режется, а не заливается в опалубку, его размеры гораздо точнее. Это способствует достижению меньшей толщины кладочного шва (2-3 мм) и сокращение площади, через которую тепло уходит наружу (мостики холода).

Толщина шва пеноблока колеблется в больших пределах и составляет 2-5 мм. В значительной мере толщина шва определяется мастерством кладочника.

Влагопоглощение

Способность впитывать воду больше у газобетона, что обусловлено наличием открытых пор.

Теплопроводность (что теплее)

При одинаковой плотности (марке блока) пенобетон и газобетон по-разному удерживают тепло.

Газобетон выступает лучшим теплоизолятором, нежели пенобетон. Например, достаточной толщиной стены для Москвы и Подмосковья при использовании пеноблока марки D 500 будет 600 мм, при использовании газобетона, всего лишь 450 мм.

3. Укладка пенобетона и газобетона

Сравнение отличий в рамках строительного процесса (монтаж, укладка, обработка)

Требования к фундаменту

Идентичны, поскольку оба вида ячеистых бетонов относится к легким. Однако, незащищенный газобетонный блок, после намокания становится тяжелее почти на половину, что создает дополнительное давление на фундамент. Пенобетон же такой чертой не обладает.

Резка, выпиливание, сверление блоков и доборных элементов

Идентичны, благодаря структуре и составу придать ячеистобетонным блокам нужную форму можно с помощью обычной ручной пилы. Просверлить, проштробить отверстие или канавку (паз), тоже легко.

Скорость строительства (укладки, монтажа)

Малый вес обоих сравниваемых материалов делает процесс строительства быстрым и простым, по сравнению, например, со штучным кирпичом.

Требования к раствору, клею для укладки

Для газобетона нужно использовать специальную клеящую смесь, это позволяет снизить расход и обеспечить тонкий шов.

Пенобетон можно класть на клей или песчано-цементную смесь.

Защита (консервация)

Если возникла потребность приостановить или прекратить строительные работы, например, на зимнее время, материалы нуждаются в консервации. При этом стены из пеноблока простоят определенный период без проблем, а вот из газоблока нужно укутывать в пленку, чтобы он не потянул влагу. Причем в защите газобетон нуждается в любое время года. Конечно, летом это не столь критично, стена из газобетона высохнет за неделю-другую (стоит ли прерывать работу так надолго?), то зимой – это намокание с последующим замерзанием-оттаиванием может привести к разрушению;

Усадка

Пенобетон может дать усадку в пределах 1-3 мм/м.п, усадка газобетона не превышает 0,5 мм/м.п.

Способность удерживать крепежи

Для обоих материалов нужно использовать специальные крепежные элементы (метизы, саморезы, химические анкера). Они разработаны специально для того, чтобы закрепляться в стенах из блоков с пористой структурой.

4. Отделка пенобетона и газобетона

Сравнительный анализ в пределах отделочных материалов и работ

Материал для отделки

Для облицовки газобетонных и пенобетонных стен (фасада) можно использовать: сайдинг, вагонку, штукатурку, вентилируемый фасад.

Материал для утепления

Благодаря тому, что в порах пеноблока и газоблока содержится воздух они являются хорошими теплоизоляторами. Поэтому дом из газобетона или пенобетона не нуждается в утеплении (при достаточной толщине стен). Если же такая необходимость возникла или, например, построена баня из этих материалов следует применять только гибкий утеплитель.

Штукатурная смесь

Для пенобетона и газобетона нужно использовать специальные смеси. Главное достоинство штукатурки для ячеистых бетонов в том, что она сохраняет способность дышать. При этом требования к штукатурке для пенобетона состоят еще и в том, что состав должен обладать хорошей адгезией к поверхности.

Технология оштукатуривания

Более пористая структура газобетона сообщает ему большую адгезию к любой штукатурке.

Пенобетон требует применения армировочной сетки, для того, чтобы штукатурка держалась надежно. В качестве альтернативы, мастера советуют обрабатывать поверхность пеноблока теркой или наждачной бумагой.

5. Стоимость пенобетона и газобетона (что дешевле)

Пенобетон дешевле на 20% газобетона той же марки. Он является более дешевым, т.к. в его производстве используются более дешевые материалы и оборудование. Это же приводит к появлению большого числа фальсифицированного материала.

Однако, при расчете стоимости строительства не стоит брать во внимание только цену покупки блоков. Нужно еще учитывать цену и расход клеевой смеси, отделочных материалов, потребности в дополнительных материалах (арматура, армирующая сетка, дополнительная изоляция, гидрофобизаторы и т.п.). Только после этого можно с уверенностью сказать, что дешевле, газобетон или пенобетон.

Что лучше, пеноблок или газоблок (сравнение) – видео

Сравнение пенобетона и газобетона – что лучше (таблица)

В таблице сопоставлены главные параметры, которые определяют свойства газоблоков и пеноблоков. В результате можно определить, какой материал выбрать для строительства при заданных условиях и требованиях.

ПараметрПенобетонГазобетон
Порообразующая добавкасмола древесно омыленная (относится к умеренно опасным веществам)пылевидный алюминий
Технология изготовленияОтливка блоковНарезание блоков
Разнообразие элементовМеньшеБольше
ИзготовлениеВозможно кустарное производствоВ заводских условиях
ПорыЗакрытыеВнешние – открытые, внутренние, в большинстве своем, закрытие
Размеры порразноразмерныеодинакового размера
Размеры блоков  
высота (толщина)200, 300, 400200
длина600500, 600
ширина100-30075-500
Плотность, кг/м.куб.300-1200
Вес, кг/м.куб.300-1200
Прочность на сжатие, для марки D500В 1В 2,5
Набор прочностиНе соответствует расчетному, с дальнейшим наборомМоментальный с дальнейшей потерей
Точность размераОбъективно существующие погрешностиМинимальная погрешность
ВлагопоглощениеМеньшееБольшее
Морозостойкость, цикловF-30F-25
Теплопроводность, Вт/М*к0,08 (теплоизоляционный) – 0,36 (конструкционный)0,1 (теплоизоляционный) — 0,14 (конструкционный
Внешний видХужеЛучше
Требования к фундаментуидентичны
Простота монтажа, резки, сверленияидентичны
Требования к клеевой смесиЛюбаяТолько специальная смесь
Защита стенНе нужнаНужна
Усадка, мм/м.п.2-30,5
Способность удерживать метизыидентична
Материал для отделкиЛюбойПозволяющий сохранить способность блока «дышать»
Материал для утепленияПредпочтительно мягкий утеплитель (при необходимости)
ОштукатуриваниеСложнее, ввиду гладкой структуры блокаПростое
Цена, руб/м.куб.2200-28003200-3500

 

Итог

Как видим, однозначного ответа на вопрос, что лучше, газобетон или пенобетон, нет и быть не может. Исходя из этой таблицы, можно сделать вывод, что пенобетон и газобетон имеют существенные отличия, не позволяющие ставить их в один ряд. Несмотря на это, общим выводом станет: газобетон имеет лучшие показатели по прочности, пенобетон по всем остальным. Какой критерий важнее, зависит от конкретной ситуации, региона и бюджета на строительство. Соответственно, каждый сам решает строить ли дом из пеноблоков или газоблоков.

ЧТО ТАКОЕ ГАЗОБЕТОН (ПЕНОПЕННЫЙ, ЯЧЕЧНЫЙ ИЛИ ГАЗОВЫЙ БЕТОН)?

Газобетон

Ячеистый бетон можно определить как бетон, полученный очень легким и ячеистым путем добавления подготовленной пены или образования газа в незатвердевшей смеси. Его также называют ячеистым бетоном и пенобетоном.

По производству газа

Добавление алюминия или цинка в цемент вызывает выделение газообразного водорода при добавлении воды.Наплавленный металл добавляется в цемент в сухом состоянии в соотношении 1: 1000. После тщательного перемешивания в сухом состоянии смешивается вода. Это вызывает выделение газов, и процесс продолжается около часа. Этой цементной пастой заполняют формы примерно на 1/3 глубины или , и вскоре после этого паста заполняет форму до верха и переливается. Затем излишки пасты удаляются, и пасте дают застыть. Паста затвердевает, образуя массу с бесчисленными маленькими пузырьками, окруженными цементом.Этот бетон непроницаем для воды, но имеет высокую усадку при высыхании. Поэтому каждый блок или блок необходимо полностью затвердеть и высушить перед использованием, чтобы исключить любую последующую усадку. Плотность этого бетона составляет от 650 до 950 кг / м 3 , а его прочность составляет от 15 до 30 кг / см 2 .

С использованием пенообразователей

Иногда обычный бетон можно сделать легким, добавив вспениватели, например, мыла на основе смол. Эти вещества образуют пузырьки внутри бетона, и его плотность снижается.Обычные тяжелые заполнители также иногда заменяют деревянными волокнами, стружкой, опилками и т. Д., Что также помогает снизить вес бетона.

Где использовать газобетон?

Газобетон используется для следующих целей

  • Перегородки для утепления из-за низкой теплопроводности и веса
  • Для защиты от огня из-за его лучшей огнестойкости
  • Конструкция полов и световая изоляция

Газобетон или пенобетон? Что лучше?

Часто, используя ячеистый бетон в строительстве, задаешься вопросом: пенобетон или пенобетон? Что лучше?

Газобетон и пенобетон относятся к категории ячеистых бетонов, их свойства соответствуют ГОСТ 25485-89, а их существенное различие заключается в технологии изготовления.При производстве газобетона пористая структура бетона формируется с помощью пузырьков газа, являющихся результатом химической реакции между цементом и алюминиевым порошком, содержащимся в газообразующем агенте. Пористая структура материала сохраняется при затвердевании газобетона. Когда прочность набирается, получается легкий и прочный материал, который неплохо сохраняет тепло.

При изготовлении пенобетона пористая структура формируется с помощью пузырьков воздуха, равномерно распределенных по цементной смеси.Наличие пузырьков воздуха в пенобетоне обеспечивается подачей пены в цементную смесь или добавлением пенообразователя в цементную смесь при перемешивании. Когда материал затвердевает, пористая структура сохраняется. Пенобетон по сравнению с газобетоном имеет структуру с закрытыми ячейками, что обеспечивает меньшее влагопоглощение.

Однако стены из пенопласта или газобетона обычно не оставляют открытыми, а защищают от воздействия окружающей среды с помощью штукатурки, сайдинга, отделочной плитки и т. Д.На строительной площадке важны не только теплоизоляционные свойства, но и предел прочности при сжатии. Пенообразователи (особенно синтетические), которые используются для изготовления пенобетона, отрицательно влияют на прочность цементного кирпича. Для изготовления несущей стены следует использовать кирпич не ниже класса В2 на разрыв при сжатии.

Для обеспечения такой прочности пенобетона плотность материала должна быть не менее 700-800 кг на куб. м. Такого же класса прочности (В2) у газобетона можно достичь при плотности 500-600 кг на куб.м. Так что газобетон можно считать более прочным материалом. По этой же причине пенобетон в производстве дороже газобетона. Для сравнения: расход цемента на изготовление 1 куб. м пенобетона плотностью 800 кг на куб. м составляет в среднем 380-400 кг, при изготовлении 1 куб. м газобетона плотностью 600 кг на куб. м потребуется всего 280-300 кг цемента. Также стоит отметить, что стена из газобетона плотностью 600 кг на куб.м может быть более тонким, имеющим такие же прочностные и теплотехнические свойства.

В любом случае, материал будет выбирать покупатель. Перед покупкой необходимо убедиться, что выбранный материал соответствует требованиям ГОСТа, а также изучить особенности использования материала и его дальнейшей эксплуатации.

Характерные особенности, чем газобетон отличается от пенобетона. Газоблок или пеноблок, что лучше

При строительстве дома важно правильно выбрать материал , который будет достаточно прочным, легким и в то же время способным сохранять тепло в доме.Среди строительных материалов для частного строительства наибольшей популярностью пользуются газоблоки и пеноблоки. Разница между ними на первый взгляд несущественная, но их технические показатели существенно отличаются от .

Сравнительная характеристика пеноблоков и газоблоков

Пенобетон и газобетон относятся к ячеистому бетону и имеют аналогичную структуру. Но из-за разного состава сырья и технологии производства ячеистые блоки имеют разные свойства и технические характеристики.Разница во взвешивании газобетонного блока и пеноблока важна для правильного выбора строительного материала. Разницу между ними нужно внимательно изучить.

Ключевые показатели, по которым данные различаются, строительные материалы, для простоты анализа сведены в таблицу.

эмпирически не удалось.

Технические показатели Пеноблок Газоблок
Цвет Серый Белый
Структура поверхности Гладкая Шероховатый
Класс плотности 700, 800, 900 350, 400, 500, 600, 700
Прочность Класс B2.0 на D800 Класс B2.0 при D500
Прочность 70 лет 50 лет. Поскольку это современный материал, проверить
Паропроницаемость Ниже Высшее
Теплопроводность Выше, но в случае с данным показателем это недостаток для стен дома Ниже
Кладка Кладка выполняется на цементно-песчаном растворе с толщиной шва 10 мм.Это способствует образованию мостиков холода. Кладка газоблоков выполняется на специальном клее. Толщина шва 1 мм, что исключает образование мостиков холода
Геометрические параметры Производство осуществляется в формах и отклонения могут достигать 5 мм. Газоблок автоклава нарезан на современном оборудовании с отклонением габаритов от нормы ± 1 мм.
Усадка 3 мм / м Процесс усадки происходит в автоклаве, поэтому она не превышает 0.1 мм / м
Из-за большего удельного веса нагрузка на фундамент больше Ниже
Удобство работы Тяжелее из-за большего веса Проще, потому что с легким материалом работать удобнее
Звукоизоляция Ниже Высшее
Удобство обработки Сложнее Из-за меньшей плотности материала распиливать легко
Коэффициент окружающей среды 4 2
Влагостойкость Высшее Ниже
Морозостойкость Ниже Высшее
Огнестойкость Высокая Высокая
Стоимость Ниже Значительно выше

Все о пеноблоках

Пеноблоки

изготавливаются из пенобетона, который образуется путем механического перемешивания бетона с пеной .Таким образом значительно облегчается вес материала. Поры пеноблоков закрываются, что способствует устойчивости суспензии к влаге.

Составные части пеноблоков:

  • песок;
  • цемент;
  • вода;
  • Пена

  • .

Технические характеристики:

  • размеры одинаковых пеноблоков и газоблоков — 200x300x600 мм;
  • вес одного блока соответствующего размера — 22 кг;
  • плотность материала — (300 — 1200) кг / м3;
  • водопоглощение — 14%;
  • теплопроводность — (0.1 — 0,4) Вт / м * К;
  • морозостойкость — 35 циклов;
  • Предел прочности на сжатие — (0,25 — 12,5) МПа;
  • расход материала — (21 — 27) шт / м3.

Преимущества пеноблоков:

Их недостатки:

Все о газоблоках

Газоблоки производятся в автоклавах из газобетона. Он образуется в результате химической реакции, в результате которой выделяется газ. В структуре газобетона под действием уходящего газа создается множество мелких трещин, поэтому такой материал пропускает воздух и влагу через .

В сегменте ячеистого бетона конкурируют два популярных материала — пенобетон и пенобетон. Планируя строительство дома, дачи, гаража или бани, каждый хозяин старается учесть все нюансы, спрогнозировать различные ситуации, оценить стоимость, в общем, создать максимально реалистичный план перед началом работ.

Первая и важнейшая задача — выбор материала для несущих стен. Что лучше построить дом из пеноблока или газоблока? У каждого из них есть свои положительные и отрицательные отзывы.

Газобетон — это группа строительных материалов, состоящих из бетона и различных добавок, придающих ему пористую структуру. Самыми известными представителями этого вида являются и.

На первый взгляд это идентичные материалы. Однако есть различия, которые формируют отличительные свойства, которые являются камнем преткновения между сторонниками и противниками этих материалов.

Чтобы сделать объективный вывод и сделать правильный выбор Предлагаем вам ознакомиться с отличием газоблока от пеноблока — сравнение по характеристикам, свойствам и цене.Для этого мы изучим все этапы жизненного цикла этих стеновых материалов, начиная с технологического процесса производства, заканчивая декоративной отделкой, т.е. проведем полный сравнительный анализ.

Сравнение что лучше: пеноблоки или газоблоки

1. Производство пенобетона и газобетона

Сравнение в рамках технологии изготовления (производства)

Композиция

Оба материала производятся путем смешивания бетона с материалами, которые придают ему пористую структуру.

Но при производстве пенобетона таким материалом (пенообразователем, пластификатором) является омыленная древесная смола (SDO), а пенобетон — пыльный алюминий.

Газобетон, в состав которого входят пенобетон и газобетон, сегодня довольно популярен. Это материалы с хорошей несущей способностью и отличными теплоизоляционными свойствами. Но у многих потребителей, несведущих в области строительных материалов, часто возникает вопрос: пенобетон и газобетон — в чем разница между ними.Чтобы ответить на него, необходимо разобраться в процессе производства двух составов и сравнить их технические характеристики.

Рассмотрим терминологию

Начнем с того, что ячеистый бетон, который также является пористым, представляет собой раствор на цементной основе, который относится к категории легких бетонов. Особенность их строения — поры, заполненные воздухом или газом. Поэтому эти материалы обладают большим количеством положительных свойств.

Теперь разница между пеноблоком и газовым блоком заключается в терминологии.Уже из названия двух материалов становится понятно, что первый сделан на основе пенопласта, второй — на основе газа. Как все это происходит?

Производственные особенности

Производство ячеистого бетона основано на двух технологиях: автоклавной и неавтоклавной. Для первых используется специальное оборудование — автоклав. По сути, это ёмкость, в которую заливается бетонный раствор. Там он подвергается высокому давлению и обработке паром при высокой температуре.

Вторая технология — это обычное смешивание компонентов раствора, разливаемого в формы при нормальной температуре и без какого-либо давления. В этих формах бетон кристаллизуется в камень.

По понятным причинам автоклавный метод производства ячеистого бетона, в котором присутствует давление, положительно влияет на характеристики производимого материала. У него более высокая плотность, а значит, и сила.

Так пенобетон изготавливается автоклавным способом из неавтоклавного пенобетона.Это первый ответ на вопрос, чем пеноблок отличается от газоблока.

Состав бетонный

Основа для производства пенобетона — цементный состав. В него вводится специальная добавка как компонент для образования пор. Сегодня производители предлагают разные виды этих добавок: на синтетической основе или на органической основе. Основная задача производства — точное соблюдение пропорций цементного раствора и добавки.Производитель в обязательном порядке указывает на упаковке последнего количественное соотношение.

Итак, в цементный состав вводится пенообразующая добавка, все это хорошо перемешивается и разливается по формам. Здесь бетон твердеет в естественной среде. Поскольку пена находилась внутри раствора, ее пузырьки воздуха образуют поры (ячейки).

Пенобетон можно заливать по месту потребности, соорудив под него опалубку. То есть из него можно возводить монолитные конструкции.По мнению специалистов, в этом плане пенобетон превосходит своего конкурента.

Теперь о рецепте газобетона. Есть государственные стандарты, которые точно определяют классический рецепт. В состав газобетона входят:

  • Портландцемент марки М500 ДО или М 400 ДО.
  • Песок кварцевый с модулем крупности не более 1,5 мм. При этом его необходимо мыть и сушить. Не допускайте попадания глины в бетон.
  • Алюминиевый порошок или паста в качестве вспенивателя.Чаще всего используются марки ПАП1 или ПАП2. Массовая доля добавки в растворе не более 1%.
  • Сода каустическая, это сода каустическая. В составе раствора он действует как ускоритель газовыделения. Его доля в растворе не более 0,45%.
  • Вода. Он должен быть чистым и теплым (+ 40-60С). Добавляется из расчета 1,25 м? раствор 0,5 м? вода.

Из всех комплектующих самой дорогой является алюминиевая пудра. Для удешевления газобетона используется другая рецептура, в которой песок заменяется на щебень известняковый (до 26%) и известь (до 2.5%). При этом массовая доля порошка снижается до 0,1%.

Оказывается, даже по составу разница между пеноблоком и газоблоком есть. Но это еще не все. Производство первых может быть организовано на стройплощадке, вторые производятся только на заводе. Первый — это точная форма изделия, которая в готовом виде сразу используется при строительстве зданий. Вторые — это готовые изделия большой длины, которые на специальных струнных станках нарезают на блоки.Блоки получаются с очень ровными плоскостями. Отсюда и ответ на вопрос, что дешевле: пеноблок или газоблок. Сначала дешевле: 1 м? пеноблоки стоят в пределах 1500 руб., газоблоки — 2200 руб.

Характеристики материалов

Перейдите к техническим характеристикам и определите, что лучше: пеноблоки или газобетонные блоки. Сразу оговоримся, что оба материала изготавливаются по одним и тем же ГОСТам. Казалось бы, характеристики пеноблока и газоблока должны быть близки друг к другу.Но это не так.

Влаго- и морозостойкость

Следует отметить, что все ячеистые бетоны хорошо впитывают влагу, а значит, обладают низкой морозостойкостью. Поэтому построенные из них дома обязательно покрывают снаружи защитными растворами или конструкциями. Так что на практике обе характеристики не учитываются. Для информации указываем, что влагопоглощение у газобетона выше, чем у пенобетона.

Прочность

Это характеристика, которую чаще всего сравнивают, когда спрашивают, из чего строить дом.Как уже было сказано, газоблоки производятся под давлением, что делает их плотность больше. Но в этом плане пеноблоки на рынке представлены разными марками, где по плотности могут составить конкуренцию газоблокам. При этом первый диапазон показателей плотности огромен от 100 до 1200 кг / м². На газовых установках разброс небольшой: 600-800 кг / м².

Но при этом разброс по прочности на сжатие у обоих материалов огромен: для пенобетона –2-7,5 МПа, для газобетона — 2.5-15 МПа. В последнем материале все зависит от выбранного рецепта и марки используемого цемента. Но если сравнить оба готовых изделия с одинаковой плотностью, то газобетон прочнее, надежнее.

Усадка

Еще один критерий, обозначающий отличия пенобетона от газобетона. В первом этот показатель составляет 1-3 мм / м, во втором 0,5 мм / м. Отсюда вывод: дома из пеноблоков в процессе усадки дают трещины.

Теплопроводность

Необходимо сравнить теплопроводность пенобетона и газобетона, учитывая их плотность. Чем выше этот параметр, тем выше теплопроводность материала. А поскольку структура у них такая же — ячеистая, то при одинаковой плотности теплопроводность будет одинаковой. Для информации:

Огнестойкость

Сопоставлять преимущества и недостатки двух бетонов по огнестойкости не стоит.Они относятся к категории негорючих материалов — НГ, и этим все сказано.

Экологическая безопасность

Здесь следует отметить, что химическая реакция, которая происходит при производстве газобетона, выделяет водород. И многих это отпугивает. Во-первых, этот газ не ядовит. Во-вторых, в порах его минимальное количество. В-третьих, поверхности изнутри покрыты отделочными материалами, которые действуют как барьерные слои от проникновения любых загрязнений.

Теперь о пенобетоне. Все вводимые в него добавки: белковые или синтетические, также не вредны для человека. Поэтому вопрос о том, какой выбрать из двух материалов, не стоит.

Размеры

Говоря о размерах пенобетона и газобетона, следует отметить, что существует стандартный модельный ряд, где пеноблоки представлены в основном тремя позициями:

  • единый блок размером 100х300х600 мм, применяется для возведения перегородок;
  • полуторный — 150х300х600 мм;
  • двойной — 200x300x600 мм.

Газоблоки имеют более широкий размерный диапазон, в основном это касается ширины, которая колеблется в пределах 100-400 мм. Высота блоков стандартная — 250 мм, длина 600 или 625 мм.

Цена продукта

Это один из важнейших критериев выбора, когда возникает вопрос, чем отличается газобетон от пенобетона. В связи с тем, что для производства первого используется дорогостоящий компонент в виде алюминиевой пудры, а в технологическом процессе используется специальное оборудование и несколько видов энергоносителей (здесь имеется в виду электричество и пар), то возникает нет сомнений в том, что газобетон является более дорогим.И разница не менее 20%.

Но это еще не все. Газобетонные блоки при монтаже укладываются на дорогой клей. Но пеноблоки укладываются на обычный кладочный раствор из цемента и песка. Кстати, для строительства гаража, сарая, котельной и других офисных зданий не стоит приобретать дорогой материал. Это касается и часто задаваемого вопроса, из чего лучше построить баню. Не увеличивайте бюджет строительства этих зданий.

Паропроницаемость

Эта характеристика также зависит от плотности материалов. Следовательно, с одним и тем же показателем будет то же самое. Хотя многие думают, и это видно из отзывов на многих порталах, пенобетон лучше «дышит». Вероятно, это зависит от размера пор.

Как по внешнему виду отличить газобетон от пенобетона — вопрос, требующий уточнения. Здесь все просто: первый — это блок белого цвета, второй — серый.Но у них другая структура. Первая ячейка меньше второй. При этом пеноблок имеет структуру с закрытыми ячейками, поэтому внешние плоскости ровные. У газоблоков ячейки во внешних слоях открыты, во внутренних — закрыты, поэтому плоскости находятся в неглубоких выемках. Поэтому любой может определить, в чем разница.

При возведении зданий практически всегда возникает вопрос о выборе стройматериалов. В этой статье мы рассмотрим два типа материалов для возведения стен: пеноблоки и газоблоки, и попробуем разобраться, из чего строить дом и что лучше — пеноблок или газоблок.

Технология производства газоблоков и пеноблоков

Это два вида строительных материалов, которые изготавливаются из разных компонентов и по-разному.

Пеноблоки

Пеноблоки изготавливаются из пенобетона — пористого материала, состоящего из цемента, песка, воды и пены. Иногда в них могут добавлять какие-то другие компоненты, например, золу. Он приобретает пористость, благодаря специальным химическим веществам, входящим в состав раствора. Этот пенистый раствор разливают в специальные формы и после застывания получают готовые изделия, в том числе пеноблоки.Благодаря пористой структуре пеноблоки обладают легкостью, низкой теплопроводностью и хорошей звукоизоляцией. Этот строительный материал очень прочный и долговечный.

Газоблоки

Теперь, чтобы ответить на вопрос, что лучше — пеноблок или газоблок, рассмотрим

Свойства тоже имеют пористую структуру и те же свойства, которые присущи пеноблокам, но они изготавливаются по другой технологии. В состав газобетона входят цемент, известь, песок, алюминиевая пудра и вода.Поры появляются при взаимодействии алюминиевой пудры с цементом. Готовую смесь перемешать и выдержать определенное время, пока она не приобретет нужное состояние. Затем получившийся массив специальными строками разрезается на блоки. Затем их помещают в автоклав, где из них испаряется вся лишняя вода, они приобретают окончательную форму и свойства, становятся готовыми к употреблению. Они легкие и обладают хорошими звукоизоляционными характеристиками, как и пеноблоки. Газоблоки обладают высокой прочностью и низкой теплопроводностью.Эти показатели немного выше, чем у пенобетона, но все же определить, что лучше — пеноблок или газобетон, непросто, в силу множества преимуществ пенобетона.

Отличия пеноблоков от газоблоков

В поисках ответа на вопрос, что лучше — пеноблок или газоблок, нужно сказать, что у этих материалов есть только одно отличие — высокая гигроскопичность из газобетона. Пенобетон, напротив, имеет невысокую гигроскопичность.

Что лучше построить

Оба материала имеют много схожих преимуществ. Так из чего лучше построить дом? Пеноблок для этого ничем не уступает газоблоку. Из обоих материалов получаются отличные одноэтажные. Они имеют показатели теплопроводности, которые конкурируют с деревом и по многим параметрам превосходят керамический кирпич. Поскольку они не содержат вредных веществ, они экологически безопасны для человека. Но у газоблоков есть один недостаток, из-за которого он уступает пеноблокам по эффективности — это сложность технологии возведения стен из этого материала, из-за его гигроскопичности.Газоблоки поставляются с завода с повышенным уровнем влажности, поэтому после постройки дома нельзя сразу проводить внешнюю отделку. Нужно подождать несколько сезонов, пока стены полностью высохнут, или оборудовать вентилируемый фасад, а это приводит к увеличению затрат на строительство. Итак, определяя, что лучше — газоблок или пеноблок, весы склонялись к последнему из-за его эффективности.

Сегодня на рынке представлено большое количество различных строительных материалов.А самые популярные строительные материалы — это блоки из ячеистого бетона. Они достаточно широко востребованы как среди домашних мастеров, так и среди специалистов.

На сегодняшний день из легкого ячеистого бетона изготавливают два вида блоков: пеноблок и газоблок. В этой статье мы рассмотрим, что выбрать: газобетон или пенобетон.

Газобетон или пенобетон

В связи с широким распространением на рынке строительных материалов многие домашние мастера пытаются разобраться, что лучше пенобетон или шлакоблок, не забывая о таком популярном строительном материале, как пенобетон.

Эти материалы характеризуются одинаковым химическим составом .

Общие компоненты:

Благодаря одинаковому составу газобетон и пеноблок имеют такие преимущества:

  • Устойчивость к воздействию различных биологических факторов (гниение, порча грызунами и др.).
  • Негорючесть.
  • Простота установки. Если вы знаете принципы кладки, то вам не нужна инструкция по возведению стены из газоблока или пеноблока своими руками.
  • Устойчивость к действующим химическим веществам.

В чем разница?

Рассмотрим технологию изготовления этих материалов:

Именно эти различия в производстве повлияли на свойства этих материалов.

Характеристики пеноблоков и газоблоков

Чтобы определить, какие блоки лучше — пеноблоки или газосиликат, в первую очередь нужно сравнить их характеристики. Несмотря на технический прогресс, сегодня не существует идеальных строительных материалов, поэтому выбирать все время нужно, сравнивая достоинства и недостатки разных блоков.

Определяя, что лучше, пенобетон или пеноблок, сравним материалы по следующим характеристикам:

Рассмотрим эти моменты подробнее.

Влагостойкость

Хороший дом должен быть сухим. И пенобетон в этом случае будет идеальным строительным материалом, так как он практически не впитывает влагу.

Рекомендация: чтобы убедиться в хорошей водонепроницаемости пеноблока , можно сделать такой опыт.Поместите агрегат в емкость с водой и оставьте надолго. Блок будет плавать по воде, как через день, так и через неделю.

Из-за такой высокой гигроскопичности опытные строители советуют гидроизолировать только наружные стены дома, которые облицованы пеноблоками.

Газобетон также является водонепроницаемым, но в несколько меньшей степени. К тому же высыхание этого материала занимает больше времени.

Теплый дом — мечта многих наших соотечественников.Учитывая суровые зимы, всем хочется забыть о сквозняках, холодных и отопительных приборах, которые расположены по всему дому.

Стены из газобетона требуют утепления, особенно внешнего. Газобетон отличается меньшей теплопроводностью, но теплоизоляция все же является обязательным процессом.

Что касается звукоизоляции, изолированные поры в пеноблоках создают лучшую звукоизоляцию, чем в пенобетоне. Но звукоизоляция этих стен все же необходима.

Прочность

В нашей стране мы давно привыкли все делать «веками». Учитывая стоимость современных строительных материалов это желание достаточно просто оправдать. Поэтому требуется прочный строительный материал для несущих стен.

Прочность газоблока выше, чем у пеноблока.

Газобетонные блоки лучше выдерживают внешние нагрузки, в результате чего они не осыпаются и не теряют форму при погрузке и разгрузке.То есть дом получается более прочным.

Таким образом, когда материал нужно обработать — выбирайте пеноблок, если вам нужен дом с прочными и ровными стенами — выбирайте газобетон.

Кладка стен

Рассмотрим , что лучше пенобетонный блок или газосиликат при кладке и в чем разница, так как удобство использования — важный показатель для каждого домашнего мастера.

Пеноблоки не боятся дождя не холода.Сразу после изготовления они готовы к использованию. Поэтому приступать к работе можно сразу по прибытии стройматериала.

В то же время газоблоки впитывают влагу, поэтому использовать их в кладке стен следует только после высыхания. Однако на этот материал лучше ложится штукатурка, что значительно облегчает выполнение отделочных работ.

Арматура

Армирование в стенах из пенобетона предотвращает образование трещин. Этот процесс является обязательным из-за их меньшей прочности.Стены из газобетона также требуют армирования, но в этом случае армированные блоки кладут только в перекрытие оконных и дверных проемов.

Размеры пеноблоков и газоблоков

Поскольку блоки из газобетона производятся в промышленных условиях, их размеры намного стабильнее, в отличие от пеноблоков. Поскольку пенобетон можно изготовить прямо на строительной площадке — с помощью специальных установок. Вследствие этого и удобство кладки, и расход самих материалов для кладки у обоих ячеистых бетонов различаются.Однако это вовсе не говорит о том, что газобетон — побеждает по всем пунктам .

Стоимость проезда

Решая, что лучше газосиликатные блоки или пеноблоки, не в последнюю очередь следует обращать внимание на разницу транспортных расходов, поскольку доставка стройматериалов до объекта строительства — обязательный этап, так как на строительство дома потребуется значительная сумма. строительных материалов.

Пеноблоки менее стойкие к транспортировке.Требуя качественной кладки, при транспортировке по плохим дорогам они могут получить минимум повреждений. Газоблоки более прочны, но, как правило, перевозятся в крытых машинах, чтобы исключить попадание влаги.

Подделки

Решая, какой пеноблок лучше или газоблок , не многие домашние умельцы думают, что сегодня на рынке очень легко наткнуться на подделку, купив сомнительные стройматериалы. И хотя производство газобетонных блоков исключает эти случаи в корне, легкие пеноблоки часто выковываются компаниями-однодневками и небольшими кооперативами.

Промышленное производство газобетонных изделий возможно только при приобретении дорогостоящего специализированного оборудования , так как все строительные материалы этого типа соответствуют всем стандартам качества.

В то же время на современном рынке очень много некачественного пенобетона. И помимо невысокой стоимости у этих стройматериалов может быть ряд других, более неприятных показателей, среди которых — низкая экологичность и повышенная хрупкость.

Факты и заблуждения

Сегодня возникает ряд вопросов по этим стройматериалам, интересует многих домашних мастеров:

  • Насколько вреден алюминий в ячеистом бетоне для здоровья человека? Эти опыты совершенно беспочвенны, поскольку алюминий, являясь одним из самых популярных материалов на земле, также встречается в традиционном керамическом кирпиче.При этом его массовая доля в кирпиче намного больше, чем в газобетоне. Этот материал не оказывает вредного воздействия на человеческий организм.
  • На цементный раствор кладут пеноблок, а газоблок кладут на клей. Укладка газоблока будет дешевле за счет экономии раствора? При кладке пеноблока слой цементного раствора составляет не менее 1 см. Клеевой слой при возведении стены из газоблоков составляет всего 2 мм. Естественно, расход клея будет в 5 раз меньше, а его цена всего в 2 раза выше стоимости бетона.

Аэробетон или пенобетон: что лучше?

Aircrete против пенобетона: что лучше?

Воздухобетон и пенобетон, оба являются типами легкого бетона. По определению, легкий бетон — это тип бетона, который включает в себя расширяющий агент, увеличивающий объем смеси, придающий ей более желательные качества, такие как низкий физический вес, но что лучше?

Обратите внимание на то, что воздухобетон и пенобетон используются для определенных конструктивных целей.Там, где аэробетон является идеальным, пенобетон может отсутствовать в некоторых аспектах и ​​наоборот.

Обладая многими схожими физическими характеристиками, основное различие между воздухобетоном и пенобетоном заключается в том, как образуются пузырьки воздуха в цементной смеси. В этой статье мы пролили свет на то, как они производятся, для чего они используются, а также на преимущества и недостатки. Давайте посмотрим.

Принципиальная разница между пенобетоном и AirCrete

Пенобетон

идеально подходит для засыпки пустот, которые больше не используются, особенно в труднодоступных местах, таких как трубы и канализационные системы, водопропускные трубы и дорожные траншеи.Он также используется для заполнения пустот под полом, стяжкой и плоской бетонной кровлей.

Пенобетон — это строительный материал, который изготавливается с использованием цементного раствора с содержанием воздуха не менее 20%. Его делают путем введения газов или пены в смесь цементного раствора и мелкого песка. Поэтому в нем нет крупных агрегатов.

Aircrete популярен благодаря использованию в строительстве жилищных систем из фундаментов, звукоизоляционных плит стен и перекрытий, амортизирующих поверхностей, потолков и даже крыш.Он также эффективен для замены неустойчивого грунта и покрытия чувствительных к весу подземных сооружений.

В промышленных целях вместо песка и извести вместо цемента используется пылевидная зола.

Как делают пенобетон

Пенобетон

производится двумя основными способами. Воздух или газ можно вводить в процессе перемешивания посредством химической реакции, или в цементный раствор можно вводить стабильную предварительно сформированную пену.

Для образования пены поверхностно-активное вещество разбавляют водой в соотношении 1:30 и пропускают через пенообразователь для получения стабильной пены, а затем смешивают с цементным раствором.

Используемый пенообразователь должен быть очень стабильным. Быстрый тест — просто налить его в стакан. Пена должна держаться без усадки и образования жидкости на дне стакана. Маленькие пузыри идеальны, так как они сильнее больших.

Пенообразователи могут быть на синтетической или белковой основе. Пенообразователи на белковой основе производят более стабильные пузырьки, что позволяет использовать больше воздуха, в то время как синтетические пенообразователи имеют тенденцию к большему расширению, что приводит к более низкой плотности.

По объему пена составляет около 40-80%.Пенобетон затвердевает так же, как и обычный бетон, поскольку в нем больше цемента. Пузырьки воздуха в пенобетоне меньше по размеру, чем пузырьки воздуха в бетоне, что делает их более прочными.

Плотность пенобетона зависит от количества вводимой в смесь пены, а прочность зависит от количества используемого песка. Больше пены означает меньший вес и, как следствие, меньшую прочность. Однако меньший вес обеспечивает лучшую теплоизоляцию.

Более подробное объяснение того, как это сделано, доступно здесь.

Применение пенобетона
  • Мостовые переправы
  • Изолированные полы, крыши и настилы с 2-часовым классом огнестойкости
  • Тротуары проницаемые
  • Прокладка подземных водоводов
  • Монтаж водопровода
  • Засыпка траншей
  • Сборные блоки и пустотелые блоки
  • Сезонные украшения, такие как Хэллоуин (его можно раскрашивать и он значительно устойчив к атмосферным воздействиям)
Преимущества пенобетона
  • Пенобетон легко вытекает из выпускного отверстия и не требует уплотнения, так как не оседает после заливки.По этой причине его можно перекачать на возвышенность или на расстояние.
  • Благодаря своему легкому весу он имеет очень небольшой собственный вес.
  • Благодаря своей сыпучести, он удобен при заполнении пустот в фундаменте, так как может соответствовать контурам земляного полотна.
  • Он поглощает примерно половину количества воды, поглощаемой воздухобетоном, и имеет низкую проницаемость, так как пузырьки воздуха не пропускают воду.
  • Он не имеет боковой нагрузки и создает очень небольшое вертикальное напряжение.
  • Наличие воздуха делает пенобетон огнестойким. Несущая стена толщиной около 15 см выдерживает возгорание до 7 часов. Стена Тем остается ниже точки возгорания.
  • Плотная ячеистая структура дает пенобетону высокую способность поглощать энергию и может останавливать движущиеся объекты. Эта причина, в частности, делает его подходящим для целей военной подготовки, чтобы остановить пули. В районах, подверженных землетрясениям, пенобетон — идеальный строительный материал.
  • Обладает выдающейся способностью распределения нагрузки.
  • Обладает отличной устойчивостью к замерзанию и оттаиванию, поэтому не замерзает в холодную погоду.
  • Позволяет ускорить строительные процессы и очень рентабельно.
  • Обладает низкой теплопроводностью.
  • Обладает хорошей звукоизоляцией, поскольку поглощает больше звука, а не отражает или пропускает его.
  • Имеет долгий срок службы, так как не разлагается со временем
  • Пенообразователь в цементе продолжает поглощать воду из атмосферы, обеспечивая постоянное увеличение прочности с течением времени.
  • Простота обращения и транспортировки
Недостатки пенобетона
  • Обладает низкой прочностью на сжатие и изгиб из-за высокой плотности пены. Прочность на изгиб измеряет эластичность материала или насколько пенобетон деформируется и перемещается при разрушении, как при землетрясении.
  • Из-за отсутствия крупных заполнителей он склонен к усадке.
  • Соотношение соединенных пор и общего количества пор влияет на его долговечность.
  • На стадии смешивания требуется больше времени.
  • Из-за гладкой внешней поверхности затрудняет отделку.
Как производится газобетон

Aircrete производится путем смешивания цемента, извести, измельченной топливной золы, алюминиевого порошка и воды. В результате химической реакции, катализируемой алюминием, образуется множество пузырьков воздуха, которые затем растворяются, в результате чего получается очень легкий блок.

В ячеистом бетоне пена образуется в результате химической реакции между алюминиевым порошком и гидроксидом кальция, щелочным элементом, образующимся при смешивании цемента с водой.В результате этой реакции образуются пузырьки водорода, которые остаются в цементном растворе. После схватывания газобетон разрезают на блоки и автоклавируют для дополнительной прочности.

Он обладает прочностью и долговечностью традиционного бетона без физического веса. Чтобы получить более подробное представление о том, как это делается, вы можете быстро взглянуть здесь.

Применение Aircrete
  • Сборные блоки и панели
  • Плиты перекрытия, настилы и утепленные кровли
  • Системы подземных трубопроводов
  • Полы амортизирующие
  • Акустические здания
  • Облегченная засыпка подземных сооружений
  • Засыпка шахт и трубопроводов
  • Свалки
  • Замена неустойчивого грунта в фундаменте
Преимущества Aircrete
  • Он прост в обращении, транспортировке и использовании.
  • Это экономически выгодно с точки зрения стоимости материалов, необходимых для его изготовления, а модель
  • Общие затраты на строительство.
  • Обладает низкой теплопроводностью и низкой плотностью.
  • Обладает хорошими акустическими свойствами благодаря своей пористости.
  • Aircrete не горит и огнестойкий; следовательно, может использоваться для строительства печей.
  • Он проницаем для водяного пара, что позволяет сохранять прохладу в помещениях.
  • Используемые материалы являются экологически чистыми, а конечный продукт не выделяет вредных газов во время строительства.
  • Он водостойкий и очень прочный, поскольку со временем не ржавеет, не гниет и не разлагается.
  • Защищен от вредителей и грызунов.
  • Разрешает использование красителей в эстетических целях.
Недостатки Aircrete
  • В небольших количествах стоимость производства высока из-за необходимости в дорогостоящем оборудовании, что приводит к высокому энергопотреблению.
  • Aircrete со временем впитывает воду, поэтому необходимо добавить покрытие с использованием таких материалов, как штукатурка.Расширение абсорбированной воды делает аэробетон со временем склонным к растрескиванию.
  • Полученные конструкции имеют гладкую поверхность, что затрудняет нанесение отделки.
  • Он впитывает воду, поэтому требуется внешнее покрытие, например, штукатурка.
  • При длительном воздействии воды в течение некоторого времени прочность газобетона может снизиться.

Из этих преимуществ и недостатков, вот краткое сравнение некоторых характеристик как газобетона, так и пенобетона:

Аспекты Пенобетон Аэробетон
Стоимость Уменьшение использования и, как следствие, стоимости бетона и стали в высотных зданиях Уменьшение использования и, как следствие, стоимости бетона и стали в высотных зданиях
Качество Конечное качество зависит от используемого пенообразователя. Качество конечного продукта неизменно, так как он доступен готовым к использованию.
Акустические свойства Звукопоглощение или изоляция отличные. Звукопоглощение или изоляция отличные.
Теплопроводность Низкая теплопроводность около 0,24 кВт-м / C Низкая теплопроводность около 0,32 кВт-м / C
Заключение

Aircrete лучше, чем пенобетон в некоторых областях, в то время как пенобетон лучше в других.Сходства обоих включают низкую плотность, уменьшенный собственный вес конструкции и простоту прибивания, пиления или резки.

Оба самоуплотняющиеся и сыпучие; поэтому они могут заполнять полости и пустоты даже при перекачке на расстояние. Когда дело доходит до рентабельности, они экономят на используемых материалах, а также на завершение проекта и ручной труд. Они представляют минимальную угрозу для окружающей среды и обладают огнестойкостью.

Есть общие недостатки, такие как чувствительность из-за использования воды во время производства, и они имеют гладкую пористую поверхность, что затрудняет нанесение отделки.

Главное — помнить, что у каждого из них есть разные приложения, зависящие от его свойств. Прежде чем остановиться на одном из них, обязательно проверьте, подходит ли он к тому проекту, который вы имеете в виду.

Источники

Изготовление пенобетона — FoamConcreteWorld.com

На этой странице описывается, как сделать FC и что влияет на «качество»

Пенобетон

также известен как

Воздухобетон, Пенобетон, Пенобетон, Пенцемент, Ячеистый легкий бетон, Бетон пониженной плотности, Легкий бетон, Ячеистый бетон, Газбетон, Пенобетон, легкий бетон воздушного твердения, газобетон, Ячеистый легкий бетон, изоляционный бетон, Ячеистый бетон из легких заполнителей, бетон низкой плотности, вспененный раствор, раствор из пеноматериала.

Пенобетон (FC) получают путем смешивания пены с раствором. Раствор представляет собой цементную смесь с песком и водой. В результате получается смесь, которая легче «обычного» бетона. Масса или плотность, как мы ее здесь называем, (вес на кубический метр) зависит от того, сколько пены добавлено в раствор. Чем больше пены мы добавляем, тем она легче, но также она становится слабее. «Идеальная» смесь должна иметь не менее 20 МПа при плотности 1000 кг / м3, однако лучшие результаты, которые я обнаружил в исследованиях, составили 18 МПа и плотность 1200 кг / м3.Простой FC без добавок обычно составляет около 5-8 МПа при плотности 1000 кг / м3. На рынке есть ФК «Бренды», претендующие на лучшее, чем это.

Чем легче ТЭ, тем лучше становится теплоизоляция. Комбинация прочности и теплоизоляции делает FC идеальным строительным материалом. О преимуществах и недостатках FC см .: Почему пенобетон — идеальный строительный материал

В этой статье мы кратко опишем:

Новая страница для домашних проектов!

Если у вас есть проект, которым вы хотите поделиться с нами, я буду рад разместить его на странице «Проекты FC».Это может быть ваш собственный домашний проект или более крупное мероприятие, например, целый дом. Или разместите его на нашей странице в Facebook, чтобы мы все могли учиться друг у друга.

https://www.facebook.com/InternationalFoamConcreteInstitute

Пенообразователи

Пенообразователи: свойства и методы

Свойства пены
Вспенивающие агенты и создание пены часто упускаются из виду из-за их важности для изготовления FC. Однако это очень важный аспект процесса, и если все сделать не «правильно», он может пойти совершенно неправильно.

Характеристики пены, из которой получается «хороший» пенобетон:

Стабильность, как долго пена удерживает пузыри.

Это можно проверить, сделав немного пены и оставив ее в стакане, и посмотреть, сколько времени пройдет, прежде чем вы увидите усадку и жидкость на дне. Он не должен разрушиться до тех пор, пока FC не установится достаточно, чтобы сохранять свою форму, это может занять до 5 часов! Однако этот тест не говорит вам, как он ведет себя при смешивании с строительным раствором и других реакциях с добавками.

Позвонить в помощь

Как вы узнаете, читая больше о пенообразователе, наиболее важным аспектом является то, как долго пена будет стоять. Большинство пенообразователей разрушаются очень быстро.

Я ищу рецепт, создающий «прочную» пену. Может ли кто-нибудь помочь в этом или знает промышленного химика, который готов помочь? Надеюсь, мы сможем придумать то, что большинство из нас сможет сделать в большинстве стран по разумной цене.

Размер пузыря:

Маленькие пузыри прочнее больших, оптимальный размер 0,5 мм. Хорошие результаты могут быть достигнуты при размере пузырьков от 0,05 до 1 мм и, предпочтительно, для большинства пузырьков такого же небольшого размера.

Однородность и форма пузыря:

Более крупные пузыри обычно схлопываются первыми при смешивании с раствором. Чем однороднее размер пузырьков, тем прочнее будет FC. Оптимальная форма пузыря — идеальная круглая сфера.Насколько он может выдерживать деформацию, зависит от модулей поверхности и поверхностного натяжения.

Связь пузырей:

В идеале все пузыри должны быть отделены друг от друга при смешивании в ступке.

Уничтожение пузырей

  • Пузырьки могут схлопнуться из-за реакции с другими добавками и цементными продуктами, которые мы добавляем в смесь.
  • Продолжительное и энергичное перемешивание пенобетона, чем необходимо, приводит к уничтожению пузырей.
  • Прокачка FC на большую длину и высоту также может разрушить пузыри.Проверьте заявления производителя пенообразователя.

Ниже приводится обзор свойств смеси FC без каких-либо добавок, которые могут улучшить некоторые из этих характеристик.

Виды пенообразователей

Пенообразователи можно разделить на классы,

Синтетические поверхностно-активные вещества , полученные из нефтепродуктов. Некоторые из них являются лауретсульфатом натрия, не путать с лаурилсульфатом натрия, это другое химическое вещество.

Прочие: додецилсульфат натрия, кокамидопропилбетан или их смесь

На белковой основе натриевых и калиевых солей жирных кислот (алкилкарбоновых кислот), таких как лауриновая и миристиновая кислоты.Обычно готовится из субпродуктов животных.

До сих пор было обнаружено, что агенты на основе белка лучше подходят для создания FC. В зависимости от того, насколько хорошо они очищены, белковые продукты могут иметь более короткий срок хранения и могут вызывать запах в FC. Каждый производитель утверждает, что у него превосходный продукт. Некоторые синтетические пены утверждают, что они более стабильны и перекачиваются, чем другие. Я нашел одно исследование, в котором сравнивали 3 разных пенообразователя.

Растительное происхождение

Этот тип является альтернативой, если вы не хотите использовать другие типы.

FOAM AGENT ISOCEM S / BN 100% РАСТИТЕЛЬНЫЙ, ISOCEM S / BN — это новый продукт в линейке Isocem, пенообразователи для производства пенобетона. Он более концентрированный и 100% растительного происхождения. https://www.isoltech.it Это единственный бренд такого типа, который я нашел до сих пор, поэтому я упоминаю его здесь по имени.

Для поставщиков пенообразователей перейдите на Пенообразователи

DIY Пена

Не рекомендуется вспенивать такие хозяйственные продукты, как мягкое мыло или шампунь, если у вас есть специальная пена FC.Стоимость даже самых дорогих пенообразователей невелика по сравнению со стоимостью вышедшей из строя партии пенобетона или целого дома! Самая большая проблема для DIY — получение небольшого количества средства. Я предлагаю обратиться в местную компанию, которая предоставляет услуги по вспениванию, или к производителю продукции FC. Однако это вещество, которое используется для «укрепления» пены, ксантановой камеди. Это также используется как пищевая добавка. Я понятия не имею, какую концентрацию использовать, поэкспериментируйте с ней и дайте мне знать, пожалуйста.Я попробовал его и обнаружил, что он не заставляет пену «стоять» дольше, но вполне может иметь другие полезные качества.

Качество пены

При вспенивании рекомендуемая «консистенция» составляет от 80 до 120 грамм на литр, но я видел публикации, в которых использовалось 45 грамм на литр.

Концентрация зависит от марки. Это достигается за счет правильной степени разбавления и процесса пенообразования. Это можно легко проверить, наполнив литровый контейнер и взвесив его.Это нужно делать перед каждым замесом! После того, как вы определились с тем, какое разведение вы хотите использовать, убедитесь, что оно всегда остается неизменным с точностью до 5%. Качество вашей пены влияет на качество FC!

На качество пены также влияет тип пенообразователя. Желаемый размер пузырьков составляет от 0,5 до 2 мм. Распределение размеров пузырьков, по-видимому, также влияет на МПа FC. Небольшой (0,5 мм) однородный размер пузырьков делает FC более прочным.

Тип пеногенератора также имеет большое влияние на размер пузырьков.Так далеко от литературы я обнаружил, что метод «сухого» вспенивания дает более мелкие пузырьки.

Добавление суперпластификаторов и ускорителя к растворной смеси также может повлиять на размер пузырьков и их распределение. Проверьте, совместимы ли эти продукты. Некоторые добавки содержат антивспениватель агент

Пену можно вводить и перемешивать, как только раствор будет готов, желательно на дне бочки. Изобретательный способ — использовать инструмент для смешивания красок, надеть на вал трубу с Т-образным соединением вверху и заглушкой вверху.Открытый конец чуть выше лопастей мешалки. Закачать пену через тройник. Картинку можно посмотреть на https://www.domegaia.com

.

Изготовление пены.

Убедитесь, что у вас есть чистая вода, обычно подходит питьевая вода. Температура воды может повлиять на результат; поддерживайте температуру от 10 до 40 C. Если он не «чистый», то органические вещества могут отрицательно повлиять на качество пенообразователя на белковой основе, что повлияет на формирование смеси FC.

Существует сухой и влажный способ вспенивания, сухой метод дает более мелкие пузыри. Большинство вспенивающих машин используют сухой метод, и можно сделать небольшой самостоятельно. Для получения однородной пены вам потребуется надежный и управляемый метод или машина вспенивания. Сухой метод также предпочтителен, поскольку легче контролировать содержание воды и, следовательно, влияние, которое она оказывает на строительный раствор.

Пенообразователь, вероятно, является самым большим препятствием в этом процессе. Они могут отличаться от самодельных, см. Https: // www.etsy.com ищет пеногенераторы и т. д. Всего около 8 человек продают различные типы. Я сделал один сам, используя метод трубы под давлением (9 л).

Полностью автоматизированная коммерческая машина большого объема см. Агенты и оборудование. У всех них есть одна общая черта: они используют сжатый воздух для изготовления пены.

Каждый тип пенообразователя имеет свою оптимальную плотность пены для создания желаемой плотности FC. Оптимальное соотношение вода / цемент также различается для каждого типа / марки пенообразователя.Поскольку соотношение воды и воды чрезвычайно важно для создания хорошего FC, рекомендуем вам сначала провести несколько испытаний.

Сжатый воздух

Не все компрессоры одинаковы! Самым важным моментом при приготовлении пены является постоянное давление, которое подается в смесительную камеру. Если давление, поступающее в пенообразователь, меняется, то качество пены будет изменяться. Я не видел исследования, в котором учитывался бы этот аспект, но мой опыт подсказывает мне, что это так.

Чтобы избежать изменения давления и объема, мощность компрессора должна быть достаточно большой, чтобы соответствовать потреблению при вспенивании! Регулятор давления должен поддерживать одинаковое давление все время, независимо от того, работает ли компрессор или его резервуар находится под давлением.

Шланг компрессора должен быть достаточно большим в диаметре и не длиннее, чем необходимо.

Содержание влаги и масла в сжатом воздухе может влиять на степень разбавления, вероятно, минимальное, но имейте это в виду.Помогает хорошая система фильтров. Если вы охладите сжатый воздух, выходящий из компрессора, до фильтра в линии, фильтры будут работать лучше. (длина стальной трубы (4м) — несложный способ.

Расчет количества

Перед тем, как сделать пену, необходимо произвести некоторые расчеты.

Вам необходимо решить, какой объем FC вы хотите произвести.

Вам необходимо определиться с плотностью FC, которую вы хотите сделать.

Это дает вам объем разбавленного агента.Разбавление зависит от типа и марки пены. Большинство брендов дадут вам рекомендации по разбавлению для данной плотности. Это разбавление должно быть точным и постоянным для каждой партии, если вы хотите получить одинаковый результат. Будьте осторожны и приготовьте больше раствора, чем нужно для партии. Во время перемешивания часть пены разрушится, поэтому вам нужно больше, чем рассчитано!

Плотность ФК зависит от того, сколько пены вы кладете в раствор, существует прямая зависимость. Я поместил это в свою электронную книгу.

Необходимо учитывать мощность вспенивающей машины, она зависит от размера партии или продолжающегося производства. Скорость производства пены должна быть немного выше, чем скорость смешивания при серийном производстве.

Другие способы изготовления FC

Высокоскоростное перемешивание

Существует метод приготовления FC, при котором вспенивающий агент добавляют в растворную смесь, когда все это находится в специальном высокоскоростном смесителе. Часто используется для FC плотностью более 1800 кг / м3.Мы оставляем это коммерческим специалистам.

Просто добавьте воды

Есть сухая смесь, в которую нужно только добавить воды, и в растворе начинают образовываться пузырьки газа. Это химическая реакция между алюминием и кислотой. Получение смеси является коммерческой тайной! Пока я нашел только одну компанию, http://www.cellularfibroconcrete.com, предлагающую этот продукт.

Примешивание пены к раствору

Это самая захватывающая часть процесса! Важная часть процесса, и она должна выполняться правильно, используйте один и тот же метод каждый раз, когда вы делаете партию FC.

Убедитесь, что ваша емкость для смешивания достаточно велика, чтобы вмещать объем, который вы хотите приготовить, плюс еще немного для исправления и предотвращения перелива за край.

Смешать пену с раствором непросто, так как масса пены и раствора сильно различаются. Это также нужно делать «осторожно», чтобы не разрушить пену. Во время смешивания часть пены неизбежно схлопнется, что повлияет на ее плотность.

Замешивание пены в строительном растворе, вероятно, последняя «добавка», которую вы хотите добавить в смесь.Все остальные ингредиенты должны быть уже смешаны, в противном случае потребуется большее перемешивание, и пена сместится сильнее.

Лучше всего залить пену на дно сосуда, близко к смесительному приспособлению, если вы делаете раствор самостоятельно. Вы, конечно, можете заказать автобетоносмеситель и залить пену в бочку грузовика. Сейчас находимся на пороге профессиональной работы!

Если вы знаете объем вашей вспенивающей машины в минуту и ​​сколько пены вам нужно, вы можете рассчитать время процесса.

Знание общего объема, необходимого для достижения желаемой плотности, также является хорошим измерением. Это должно дать вам теоретическую плотность, но вы, конечно же, должны это проверить, взвесив FC перед заливкой!

Теперь вы готовы к заливке! Но подождите, это была простая версия! Если вы хотите добиться «более сильного» ФК, существует множество вариантов. Отказ от простого добавления еще одного ингредиента в ступку во время смешивания и надежды на лучшее, чтобы действительно понять, что вы делаете, и сделать все правильно.

Замешивание раствора

Основными ингредиентами раствора являются портландцемент, песок и вода. Есть много различных компаний, которые производят портландцемент в соответствии со стандартами, соответствующими портландцементу типа I, указанному в Британском стандарте (BS EN 197-1: 2000). Здесь мы предполагаем, что это соответствует стандарту.

Песок

Песок, песок должен быть чистым речным песком и предпочтительно равного размера, было обнаружено, что увеличение размера частиц мелкого заполнителя снижает его прочность.Часто используется мелкодисперсный кварцевый песок разных размеров 0,6, 1,18 и 2 мм. Песок, размер которого меньше 2 мм, может стоить дороже. Проверьте массу вашего песка, она может варьироваться от 1,2 до 2,1. Вероятно, это в основном около 1,6. Это может иметь большое влияние на желаемую плотность и другие сопутствующие ей качества.

Соотношение воды и цемента (ж / ц) очень важно, оно в значительной степени решает, насколько «прочным» будет ваш FC. В настоящее время обычной практикой является использование суперпластификатора для улучшения строительного раствора.Влажность зависит от используемого пластификатора. В одном исследовании они использовали GLENIUM52, соответствующий стандарту ASTM (ASTM C494M – 04). Суперпластификатор выпускается в виде темно-коричневого водного раствора. Оптимальная пропорция смеси была разработана на основе заданной плотности, в / в и в / в (соотношение песка и цемента) легкого пенобетона. Диапазон плотностей составлял 1500, 1750 и 1800 кг / м3. Диапазон используемых соотношений в / ц составлял 0,5, 0,45, 0,4, 0,35 и 0,3, в то время как коэффициент вязкости был 1,0 для всех смесей в этой работе.

В приведенном выше примере показан очень плотный FC, для ваших целей вы можете стремиться к 1000 кг м3.

Соотношение W / C для создания оптимальной прочности FC с используемым пенообразователем может варьироваться. Исследование показало, что разные агенты требуют разного соотношения W / C для оптимальной прочности. Возможно, это связано с тем, что вода может вымываться из пены, но это всего лишь мои предположения.

Измерение качества раствора

Поскольку качество песка и содержание влаги, количество добавляемой воды и другие незначительные вариации ингредиентов могут варьироваться, результат смешивания должен быть одинаковым, чтобы обеспечить стабильно хороший FC.Вам нужно измерить консистенцию; один из способов сделать это — испытание на спад. Испытание на оседание является мерой консистенции и удобоукладываемости бетона. Таким образом, консистенция является мерой содержания воды в бетоне. Содержание воды контролирует и влияет на содержание цемента в бетоне. Поскольку испытание на оседание важно, не заменяйте реальный тест предположением. Раствор должен быть достаточно текучим, чтобы можно было смешать с ним пену. Если он слишком жесткий, то пена разрушится,

Оборудование, необходимое для испытания на оседание: конус для испытания на оседание, непористая опорная плита, измерительная шкала, стержень для измерения температуры.

Форма для теста имеет форму открытого верхнего и нижнего конусов высотой 30 см, диаметром нижнего 20 см и верхним диаметром 10 см.

Конус кладут на твердую неабсорбирующую горизонтальную поверхность. Этот конус заполняется свежим бетоном в три этапа. Каждый раз каждый слой утрамбовывают 25 раз металлическим стержнем с пулевым наконечником длиной 60 см и диаметром 16 мм. В конце третьего этапа бетон вытирается заподлицо с верхней частью формы. Форма поднимается вертикально вверх, чтобы не задевать бетонный конус.Затем бетон оседает. Осадка бетона измеряется путем измерения расстояния от вершины осевшего бетона до уровня вершины конуса оседания.

Измерение проводится сразу после подъема конуса. Это должно быть в пределах 5% от того, чего вы хотите достичь.

Если результат испытания на оседание выходит за пределы диапазона осадки, исправьте его перед укладкой бетона в работу. Внесите следующие исправления: Слишком низкая осаждение: добавьте воды в отмеренных количествах, чтобы привести оседание в указанный диапазон.Слишком высокая осадка: добавьте дополнительный цемент, чтобы довести осадку до указанного диапазона. Используйте того же производителя, что и партия. Запишите добавленный цемент для использования в будущем. После добавления воды или цемента повторно перемешайте партию в течение 50 оборотов при скорости перемешивания, чтобы обеспечить адекватное диспергирование материалов по всей партии. Повторите тест, чтобы проверить соответствие диапазону.

Если вам сложно измерить высоту провала, вы можете измерить диаметр «провала». Чтобы упростить задачу, отметьте на доске концентрические круги и поместите конус в центр.Убедитесь, что доска расположена горизонтально, и поднимите трубу. Запишите результат для использования в будущем.

Самое главное, чтобы ваш метод был последовательным.

Тестирование смеси FC

Вы проверили пену и раствор, теперь вам нужно убедиться, что у вас правильная плотность.

Вы можете использовать тот же конус, но заполнять его за один раз и не трогать. Вашу высоту проседания будет слишком сложно измерить, вместо этого измерьте диаметр «провала». Чтобы упростить задачу, отметьте на доске концентрические круги и поместите конус в центр.

Если он слишком «тонкий», измените свое мнение о том, что вы собираетесь делать, поскольку добавление строительного раствора не является хорошей практикой. Не достаточно «тонкий», добавьте в смесь больше пены.

Также неплохо сделать тестовый образец (образцы) из каждой партии. Убедитесь, что вы идентифицировали каждый образец. Даже если вы делаете кирпич, размер тестовой выборки должен быть одинаковым и подходящим для тестирования. Нарезка кирпича по размеру для тестирования не является приемлемым методом, так как во время резки вы можете образовать трещины от волос.

Опалубка

Самый простой способ — сделать кирпичи.Размер зависит от вашего метода строительства и всех других факторов, влияющих на толщину стены. На мой взгляд, чем меньше кирпичей нужно использовать для постройки стены, тем она лучше. Решающим фактором может быть вес, который вы можете поднять и разместить, а также сделать прямую стену. Чем меньше кирпичей, тем меньше потребуется раствора, меньше отделочных работ и вероятность попадания воды через шов.

Самый простой способ сделать форму для кирпича — это фанера и саморезы. Это может длиться долго, можно сто раз, делал это сам.

Первое правило — форма должна быть достаточно прочной, чтобы удерживать вес на FC. Я никогда не использовал ничего толщиной менее 16 мм, в том числе потому, что винтам нужно немного толщины, чтобы они держались, и чтобы они оставались ровными.

Вы должны иметь возможность снимать форму сбоку с FC. Вы не можете поднять его прямо вверх, не повредив FC, если используете фанерную форму. Таким образом, изготовление длинной формы с помощью фанерных разделителей не подходит для опалубки из фанеры!

Лучше всего покрасить фанеру, чтобы она не впитывала воду.Каждая неровность дерева проявится в вашем кирпиче!

Я всегда использую смазку для форм для «нормального» бетона на форме, так как бетон может прилипать к форме и вытягиваться. Самый дешевый разделительный агент — это сахарная вода, но я не уверен, что она делает с FC. Попробуйте и дайте мне знать. Смотрите этикетку на пенообразователе на предмет совместимости!

Если вы хотите использовать металлическую форму, проверьте поставщиков оборудования FC, перейдите к агенту по пенообразованию и поставщикам оборудования

Есть несколько интересных систем блокировки.

Заливка ваш FC

Заливка FC

Даже более увлекательно, чем создание FC, и может быть столь же сложно!

Критическими точками в этом процессе являются:

  • Форма чистая и обработана смазкой.
  • Сидит идеально горизонтально и остается таким под весом.
  • У вас есть достаточно форм для вашей партии плюс несколько запасных!
  • При заливке вы можете удобно добраться до всех форм.
  • Установите форму так, чтобы ее можно было легко разобрать.
  • Раньше нам приходилось лепить формы на столе, но нам приходилось переносить бетон с тележки на стол. С помощью FC вы можете смешивать FC в бочке, которая находится над формами и имеет шланг, прикрепленный ко дну.
  • Контроль за заливкой, чтобы не пролить.
  • Заполняйте форму каждый раз до нужного уровня!

Чистите свое оборудование каждый раз! Я уже упоминал о необходимости мыть пенообразователь (желательно) теплой водой!

И последнее, но не менее важное: поддерживайте порядок, это позволит избежать несчастных случаев.Я уже упоминал об очистке после заливки партии?

Отверждение FC

Это процесс упрочнения FC. Как вы теперь обнаружили, приготовление FC похоже на выпечку пирога, а не просто пирога. А теперь самое лучшее, потому что вам не нужно делать слишком много. Для выпечки торта вам понадобится хорошая надежная духовка. То же самое и с ФК. Отверждение — это химический процесс. Вода вступает в реакцию с ингредиентами смеси! Все ваши усилия могут быть провалены, если этого не произойдет, как должно быть.

Вы можете обнаружить, что FC затвердевает дольше, чем обычный бетон. Агенты Fc имеют тенденцию оказывать замедляющее действие.

Держите разлитую форму влажной или не дайте ей высохнуть, накройте то, что вы вылили. Даже если это целый дом! Не дайте высохнуть! Вы также можете сохранить его влажным после того, как он застынет, обрызгав его водой. Если вы заставляете блоки закрывать их до тех пор, пока не вынимаете их из формы, то заверните блоки в пищевую пленку. Оставьте их лечиться хотя бы на неделю, лучше четыре недели.Этот процесс лечения будет длиться годами.

Правила отверждения FC такие же, как и для «обычного» бетона, перейдите по ссылке https://www.wikihow.com/Cure-Concrete

Еще об этом, 8 страниц и несколько интересных моментов.

Извлечение FC из формы.

Это лучше всего делать, когда он установлен достаточно, чтобы держать свою форму, и достаточно прочным, чтобы выдерживать силу, которую вы можете приложить к нему при снятии формы.

Это может варьироваться от пары часов до более чем 3 дней.Это зависит от замедляющего действия и температуры окружающей среды.

Внутреннее отверждение

Curing FC — это химический процесс! Ему нужна вода. Когда для отверждения использована вся доступная вода, процесс останавливается. Некоторые ингредиенты могут не полностью прореагировать с соседним компонентом из-за отсутствия воды. В результате ФК в этот момент слабее. Преимущество FC в том, что «корка» пузыря содержит воду и становится доступной для внутреннего отверждения.Некоторые пенообразователи могут выполнять эту работу лучше, чем другие, но это предмет дальнейших исследований.

Внутреннему отверждению может способствовать использование материалов, которые быстро впитывают воду при точении, но высвобождают ее медленно, или для высасывания воды из материала требуются силы. Супервпитывающий полимер (SAP) является таким материалом и может быть добавлен в смесь FC. Некоторые легкие заполнители поглощают воду и легко выделяют ее, что затрудняет получение правильного водоцементного отношения, а это крайне важно.

Нравится:

Нравится Загрузка …

Frontiers | Динамические характеристики пенобетона с переработанным кокосовым волокном

Введение

Пенобетон используется в качестве наполнителя для противоударных барьеров из-за его хороших энергопоглощающих свойств. Однако его существенные недостатки, включая низкую прочность, низкую ударную вязкость и легкое растрескивание, могут повлиять на характеристики конструкции и безопасность противоударных барьеров (Kearsley and Wainwright, 2001; Etkin et al., 2010; Кудяков, Стешенко, 2015). Многие существующие исследования подтвердили, что включение волокон в пенобетон может улучшить прочность, ударную вязкость, трещиностойкость и характеристики поглощения энергии (Zhang et al., 2011; Ma et al., 2012; Shen et al., 2012) . Волокна, обычно используемые в машиностроении, такие как стальное волокно, стекловолокно или другое синтетическое волокно, обычно имеют недостатки, связанные с поглощением высокой энергии и высоким потреблением ресурсов (Zhan et al., 2009; Wang, 2011; Shang and Song, 2016). , что может привести к загрязнению окружающей среды и увеличению стоимости проекта.Таким образом, существует необходимость в разработке новых альтернативных материалов. Койровое волокно (CF) — это возобновляемое переработанное растительное волокно с преимуществами хорошей экономии энергии, благоприятной защиты окружающей среды и превосходных механических свойств (Calado et al., 2000). Некоторые предыдущие исследования показали, что механические характеристики материалов на основе цемента можно улучшить, добавив CF. Ван и Чоу (Wang and Chouw, 2017) изучали динамическое поведение железобетона CF (CFRC) при ударных нагрузках падающим весом.Они обнаружили, что на характеристики CFRC при повторяющихся ударах влияет длина CF, а CF длиной 25 и 50 мм имеет лучшую ударопрочность, чем 75 мм. Дансо и Ману (Danso and Manu, 2020) провели исследование влияния содержания CF (0,2–0,8% по весу) и содержания извести (0–15% по весу) на поведение грунтово-цементного раствора, указав, что оптимальный Прочность была записана при 0,2% CF и 5% добавке извести в образец. Али и др. (2012) исследовали влияние содержания CF (1, 2, 3 и 5% по массе цемента) и длины CF (2.5, 5 и 7,5 см) на механические и динамические свойства элементов из железобетона CF (CFRC). Результаты показали, что CFRC с длиной CF 5 см и содержанием CF 5% имеет лучшие свойства.

Как показано выше, было доказано, что CF может заменить эти обычные волокна в соответствии с требованиями энергосбережения и защиты окружающей среды. Однако большинство существующих исследований сосредоточено на обычном бетоне с добавлением CF или пенобетоне с добавлением обычных волокон.Исследований по применению CF в пенобетоне было очень мало. Mohamad et al. (2018) провели экспериментальное исследование влияния содержания CF (0,1, 0,2 и 0,3% от общей массы цемента) на механические свойства и поведение пенобетона при изгибе. Было отмечено, что пенобетон с 0,3% CF испытал наименьшее распространение трещин, а прочность на сжатие, предел прочности на растяжение и модуль упругости пенобетона увеличивались с увеличением процента CF.Исследование Мохамада дало некоторые положительные результаты. Однако этого все же было недостаточно.

Исходя из этого, необходимо систематически и всесторонне изучать механическое поведение пенобетона CF, чтобы лучше понять влияние CF на характеристики пенобетона. В предыдущей работе изучалось влияние содержания CF на статическое поведение пенобетона CF, включая его свойства сжатия и изгиба. Результаты показали, что CF значительно улучшил статические характеристики пенобетона.Статическая прочность на сжатие увеличилась с 0,83 до 1,51 МПа при увеличении содержания CF от 0,0 до 1,5%, поглощение статической энергии увеличилось с 55,37 до 106,32 Дж при увеличении содержания CF с 0,0 до 2,0%, а статическая прочность на изгиб увеличилась с 0,33 до 0,73. МПа при увеличении содержания CF от 0,0 до 2,0%. Однако рост производительности пенобетона пошел вспять, когда CF превысил пороговое значение. Исходя из этого, необходимы дальнейшие исследования для изучения механической реакции пенобетона CF на ударную нагрузку, которая значительно отличается от таковой при статической нагрузке.

В этой статье динамические характеристики CF-пенобетона были исследованы с использованием экспериментальной технологии разделенной балки давления Хопкинсона (SHPB), классического экспериментального метода для проверки динамических свойств материалов Gray (2000). В общей сложности 54 образца круглой корки пенобетона, разделенных на шесть групп с шестью различными содержаниями CF, были использованы для изучения влияния содержания CF на режим разрушения, динамическую прочность на сжатие, поведение при напряжении и деформации и способность пенопласта поглощать энергию. бетон при трех давлениях газа.Кроме того, был проведен анализ микроструктуры с использованием сканирующего электронного микроскопа (SEM) и дифракции рентгеновских лучей (XRD), чтобы осветить микроскопический механизм CF-пенобетона для объяснения этого динамического поведения.

Экспериментальная программа

Сырье и подготовка образцов

Пенобетон CF, использованный в данном исследовании, был приготовлен путем смешивания пенобетона с CF шести различных объемных долей (0, 0,5, 1,0, 1,5, 2,0 и 2,5%) . Следует отметить, что содержание CF, приведенное в этом исследовании, относится к объемным долям.

Взяв в качестве сырья композитный портландцемент P.C32.5R, кокамидопропилбетаин CAB-35 (пенообразователь), гидроксипропилметилцеллюлозу (стабилизатор пены), нанокремниевый диоксид (усиливающий пенообразователь), подробные параметры свойств которых были Пенобетон, предусмотренный в Т1-5, был произведен в следующие этапы. Во-первых, пена была приготовлена ​​путем смешивания стабилизатора пены, армирующего агента, пенообразователя и воды в весовом соотношении 0,05: 0,2: 1: 7,5. Во-вторых, цементный раствор был приготовлен в смесителе с водоцементным соотношением 0.5. В-третьих, пену выливали в цементный раствор в объемном соотношении 1: 2 и затем перемешивали в смесителе для раствора в течение 3 мин.

ТАБЛИЦА 1 . Параметры собственности цемента.

ТАБЛИЦА 2 . Параметры свойств пенообразователя.

ТАБЛИЦА 3 . Параметры свойств пенного стабилизатора.

ТАБЛИЦА 4 . Параметры свойств пенопласта.

ТАБЛИЦА 5 . Параметры свойства CF.

Перед добавлением CF в пенобетон, CF следует предварительно обработать для улучшения характеристик (Wang and Chouw, 2017).В этом исследовании CF замачивали в течение 30 минут после повторной очистки и кипятили в течение 2 часов в электротермостатическом водном шкафу. После этого кипяченый CF сушили при постоянной температуре 60 ° C в течение 24 ч с помощью электрического термостатического сушильного шкафа. Эти высушенные CF затем разрезали на мелкие кусочки длиной 20 ± 2 мм.

Производство пенобетона CF было завершено после того, как CF постепенно добавлялся в пенобетонный раствор и перемешивался в течение примерно 2 минут, чтобы гарантировать, что части CF были равномерно распределены в бетонном растворе.

Всего 54 образца круглых лепешек диаметром 75 мм и толщиной 35 мм были отлиты, выполнив следующие действия: во-первых, формы были предварительно обработаны маслом для облегчения извлечения из формы. Во-вторых, раствор из пенобетона CF заливался в формы и подвергался механической вибрации, чтобы избежать образования сот и отверстий. Наконец, все 54 образца, поровну разделенные на шесть групп в соответствии с содержанием CF, были отверждены в течение 28 дней после извлечения из формы. Образец описан на рисунке 1, а процесс производства пенобетона CF показан на рисунке 2.

РИСУНОК 1 . Образец.

РИСУНОК 2 . Процесс производства пенобетона CF.

Методы испытаний

Испытание на сжатие при однократном ударе было проведено с помощью экспериментальной технологии SHPB для измерения механических свойств образцов при динамическом ударе (Davies and Hunter, 1963; Frew et al., 2001). В этом исследовании была принята установка SHPB диаметром 75 мм, состоящая в основном из системы загрузки, измерительной системы и системы сбора и обработки данных.В этой установке SHPB пуля имела диаметр 75 мм и длину 500 мм, падающий стержень имел диаметр 75 мм и длину 5,5 м, а направляющий стержень имел диаметр 75 мм и длину 3,5 м. Расстояния от двух тензометров на падающем стержне до точки удара составляли 2,54 и 2,76 м соответственно, в то время как расстояние от тензометров на передаточном стержне до точки удара составляло 1 м. Подробная схематическая диаграмма экспериментальной установки показана на рисунке 3.

РИСУНОК 3 .Испытательное оборудование.

Экспериментальная рабочая процедура была представлена ​​следующим образом. Сначала образец был отполирован с использованием высокоточного шлифовального станка для обеспечения гладкости и параллельности их двух поверхностей. Во-вторых, образец с вазелином, нанесенным на две его поверхности, помещали между падающим стержнем и трансмиссионным стержнем. В-третьих, была откалибрована система сбора сигналов и настроено давление газа. Наконец, клапан пневматического пистолета был выпущен, и пуля попала в упор.

Экспериментальная методика SHPB была основана на предположении об одномерной упругой волне и предположении об однородности напряжения и деформации. Принцип работы установки ШПБ описывался следующим образом: пуля, приводимая в движение газом высокого давления, попадала в падающую штангу с определенной скоростью V 0 . Таким образом, генерировалась волна напряжения , i ( t ), которая распространялась в падающем стержне. В результате под действием этой волны происходила высокоскоростная деформация образца.Тем временем волна ε r ( t ) отражалась от образца к падающему стержню, в то время как волна ε t ( t ) проходила от образца к трансмиссионная планка. После этого три сигнала деформации были измерены тензометрами и собраны индикатором динамической деформации. Затем сигналы данных обрабатывались с помощью профессионального программного обеспечения SHPB, после чего можно было получить динамические свойства образцов (Wang et al., 2011).

Согласно теории одномерных упругих волн, напряжение, деформация и скорость деформации образца можно сформулировать следующим образом:

σ = A02AsE0 [εi (t) −εr (t) −εt (t)] (1 ) ε · = C0Ls [εi (t) −εr (t) −εt (t)] (3)

Где ε i ( t ), ε r ( t ) и ε t ( t ) — падающая волна напряжения, отраженная волна напряжения и прошедшая волна напряжения соответственно. A 0 — площадь поперечного сечения стержня. E 0 — модуль Юнга материала стержня. C 0 — скорость волны. A s и L s — исходная площадь поперечного сечения и длина образца соответственно.

Исходя из предположения об однородности напряжения и деформации в образце, соотношение между напряжением, деформацией и скоростью деформации может быть получено следующим образом:

Подставив уравнение.4 в уравнение. 1 экв. 3 затем превращается в

ε = −2C0Ls∫0tεr (t) dt (6)

Динамические свойства образца были рассчитаны в соответствии с приведенными выше уравнениями. В установке SHPB путем установки различных давлений рабочего газа (0,20, 0,25 и 0,30 МПа) скорость удара пули была скорректирована для создания различных волн напряжения ε i ( t ), ε r ( t ) и ε t ( t ), которые соответствовали разным скоростям деформации.Девять идентичных образцов в каждой из шести групп были поровну разделены на три комплекта и подвергались ударным нагрузкам при трех различных давлениях рабочего газа. Каждый образец был пронумерован в последовательности: содержание CF — давление газа — порядковый номер в каждом наборе. Например, образец с номером CF1.5-AP0.25-3 является третьим из установленных на давление газа 0,25 МПа с содержанием CF 1,5%. Более подробные параметры испытаний представлены в Таблице 6.

ТАБЛИЦА 6 . Параметры образца.

Кроме того, было проведено микроскопическое исследование на основе SEM и XRD для дальнейшего объяснения механизма изменения характеристик пенобетона CF. После испытаний SHPB в общей сложности 18 типичных поврежденных образцов, равномерно выбранных из шести групп, были обработаны для анализа микроструктуры. Морфологию образцов наблюдали с помощью SEM, а фазовый состав образцов характеризовали с помощью XRD. Кроме того, параметры пористой структуры образцов определялись методом анализа изображений (Zhang et al., 2015; Райяни и др., 2016).

Результаты и анализ

Экспериментальные результаты были сопоставлены и проанализированы для изучения влияния содержания CF на динамические характеристики пенобетона. Следует отметить, что экспериментальные данные образцов с содержанием CF 2,5% при давлении газа 0,3 МПа отсутствовали из-за некоторых проблем в испытательном оборудовании.

Режимы отказов

Для облегчения обсуждения видов отказов из каждого набора для анализа был выбран один репрезентативный образец.F4F6 описывает поврежденные образцы с различным содержанием CF при трех давлениях газа. Образцы без CF разорвались на мелкие кусочки или рассыпались в порошок, что, очевидно, привело к хрупкому разрушению, как показано на рисунках 4A, 5A, 6A. При увеличении содержания CF от 0,5 до 1,5% образцы представляли меньше повреждений и в основном сохраняли свою целостность с небольшими разрывами и отслаиваниями на краях, как показано на рисунках 4B – D, 5B – D, 6B – D. Даже при высоком давлении газа 0,3 МПа, как показано на рисунках 6B – D, эти образцы с адекватным содержанием CF также рвутся только по краям, вместо того, чтобы рассыпаться в порошок или разламываться на мелкие кусочки, что указывает на то, что включение с достаточным содержанием CF может эффективно улучшить сопротивление деформации пенобетона и способствовать режиму разрушения образца от хрупкого разрушения до пластичного разрушения.Это в основном связано с улучшающим эффектом CF на целостность и ударопрочность бетонной матрицы. Однако режимы отказа показали небольшие изменения для образцов с содержанием CF 2,0 и 2,5%, как показано на рисунках 4E, F, 5E, F, 6E. Эти образцы с чрезмерным количеством CF имели тенденцию демонстрировать удивительно похожие режимы разрушения, что указывает на то, что эффективность CF была ограничена в улучшении пластичности и ударопрочности пенобетона.

РИСУНОК 4 .Режимы отказа при давлении газа 0,2 МПа (А) CF0.0-AP0.20-1 (B) CF0.5-AP0.20-3 (C) CF1.0-AP0.20- 1 (D) CF1.5-AP0.20-2 (E) CF2.0-AP0.20-3 (F) CF2.5-AP0.20-3.

РИСУНОК 5 . Режимы отказа при давлении газа 0,25 МПа (А) CF0.0-AP0.25-2 (B) CF0.5-AP0.25-3 (C) CF1.0-AP0.25- 3 (D) CF1.5-AP0.25-1 (E) CF2.0-AP0.25-3 (F) CF2.5-АП0.25-1.

РИСУНОК 6 . Режимы отказа при давлении газа 0,3 МПа (А) CF0.0-AP0.30-3 (B) CF0.5-AP0.30-3 (C) CF1.0-AP0.30- 2 (D) CF1.5-AP0.30-1 (E) CF2.0-AP0.30-3.

Динамическая прочность на сжатие

На рис. 7 показаны значения динамической прочности на сжатие и коэффициенты динамического увеличения образцов, причем разные цвета представляют разные давления газа: серый для 0,2 МПа, красный для 0,25 МПа и синий для 0.3 МПа.

РИСУНОК 7 . Прочность на динамическое сжатие и коэффициент динамического увеличения (A) Прочность на динамическое сжатие (B) Коэффициент динамического увеличения.

Из рисунка 7A можно видеть, что изменяющиеся тенденции динамической прочности на сжатие с увеличением содержания CF были в основном идентичны при разных давлениях газа, то есть сначала увеличивались, а затем уменьшались. Возьмите изменяющуюся кривую динамической прочности на сжатие с содержанием CF при давлении газа 0.Например, 20 МПа (серая кривая на рисунке 7A). Прочность на сжатие образцов с содержанием CF 0,0, 0,5, 1,0, 1,5, 2,0 и 2,5% составляла 1,55, 1,65, 1,93, 2,27, 2,13 и 1,23 МПа соответственно. Было обнаружено, что образец без CF имел низкую прочность на сжатие 1,55 МПа. При добавлении CF прочность на сжатие быстро возрастала и достигла максимального значения 2,27 МПа при содержании CF 1,5%. Скорость роста прочности на сжатие составила 46,45%. Аналогично для двух других изменяющихся кривых при давлении газа 0.25 и 0,3 МПа оптимальное содержание CF для получения максимальной динамической прочности на сжатие также составляло 1,5%. При добавлении 1,5% CF образцы имели самую высокую динамическую прочность на сжатие 3,18 МПа (при давлении газа 0,25 МПа) и 4,21 МПа (при давлении газа 0,30 МПа). Это показало, что CF имеет очевидный эффект улучшения динамических свойств сжатия пенобетона.

Однако динамическая прочность образцов на сжатие снижается, когда содержание CF превышает 1.5% и упали до минимальных значений при содержании CF 2,5%. Также возьмите серую кривую (при давлении газа 0,20 МПа) на рисунке 7А. Например, динамическая прочность на сжатие образца с содержанием CF 2,5% составила 1,23 МПа, что даже ниже, чем у образца без CF. Это продемонстрировало, что улучшение динамической сжимаемости пенобетона, которое в значительной степени зависит от содержания CF, будет прекращено, когда содержание CF превысит пороговое значение (1,5% в этом исследовании).

Кроме того, все образцы оказались более прочными при более высоком давлении газа из-за эффекта скорости деформации (Sun et al., 2018). Более высокая ударная нагрузка (т.е. более высокое давление газа) соответствовала большей скорости деформации нагружения, что способствовало увеличению прочности на сжатие.

В предыдущем исследовании была проверена и получена статическая прочность на сжатие пенобетона CF с таким же составом смеси. Результат показал, что при увеличении содержания CF от 0,0 до 2,5% статическая прочность на сжатие сначала увеличивалась, а затем уменьшалась, значения которой равнялись 0.82, 0,96, 1,20, 1,51, 1,42 и 0,73 МПа соответственно. Очевидно, изменяющийся закон статической прочности на сжатие в основном совпал с законом динамической прочности на сжатие. Это показало, что CF показал одинаковый эффект как на динамическую, так и на статическую прочность на сжатие.

Чтобы лучше понять механизм изменения характеристик бетона, было обсуждено влияние CF на характеристики бетона на основе результатов SEM и XRD как с положительных, так и с отрицательных сторон.

С положительной стороны, CF показал улучшение характеристик бетона.Было известно, что механическая прочность бетона в основном связана с гелем гидрата силиката кальция (гель C-S-H), основным продуктом гидратации цемента, который обладает высокими характеристиками сжатия, но плохо ведет себя при растяжении и вязкости. После того, как CF был добавлен в пенобетон, матрица, агрегат кристаллогидратов, содержащий непрореагировавшие частицы цемента и продукты гидратации, связанные с CF, образуют пространственную сетчатую структуру с хорошей целостностью, как показано на рисунке 8. Водородная связь между CF лигнином и гель CSH, а также высокая прочность на разрыв CF способствовали отличной межфазной связи между CF и матрицей, что привело к значительному повышению прочности бетона (Uygunolu, 2008; Yang et al., 2010).

РИСУНОК 8 . Структура космической сети.

Между тем, гидроксид кальция, еще один продукт гидратации цемента, увеличился с 870 до 1 473 а. u. с увеличением содержания CF от 0,0 до 2,5%, как показано в спектре XRD на Фигуре 9A. Это указывает на то, что CF вызывает увеличение гидроксида кальция, хотя он не участвует в реакции гидратации цемента. Как видно из рисунка 9B, гидроксид кальция может заполнять поры в бетоне, увеличивая плотность бетона, улучшая межфазную связь между CF и цементной матрицей и предотвращая возникновение и расширение трещин в бетоне, что приводит к лучшим характеристикам бетона.

РИСУНОК 9 . Микроструктура (A) Спектр XRD (B) Результат СЭМ.

Более того, как видно из Фиг.10, поры становились меньше, меньше и более однородными при добавлении CF. Пористость и средний диаметр пор уменьшались с увеличением содержания CF. Разница между значением округлости и 1,0 (оптимальное значение округлости), которое отражает регулярность формы пор, также уменьшилась после добавления CF. Это также подтвердило, что правильное содержание CF улучшило характеристики бетона, способствуя лучшей структуре пор бетона (Zhu et al., 2017; Чжоу и др., 2019).

РИСУНОК 10 . Структура пор (A) Фотография сечения образца в высоком разрешении (B) Параметры структуры пор.

Однако CF также оказывает негативное влияние на характеристики бетона. CF привел к падению интенсивности геля C-S-H с 2436 до 1445 a. u., как показано на рисунке 9A, что отрицательно сказалось на прочности бетона. Чрезмерное количество CF поглотило слишком много воды и соединилось с образованием агломератов, что привело к появлению сухих усадочных трещин и плохой текучести цементного раствора.Кроме того, внутренние пузырьки прорезались избытком CF и сливались в поры в форме стержней. Что касается структуры пор, то поры были слишком маленькими и неоднородными.

Эти данные свидетельствуют о том, что, когда содержание CF было меньше порогового значения, положительный эффект играл доминирующую роль, приводя к увеличению прочности бетона. Однако, как только содержание CF превышает пороговое значение, отрицательный эффект начинает перевешивать положительный, что приводит к ухудшению прочности бетона.

Коэффициент динамического увеличения был рассчитан по формуле.8 согласно (de Andrade Silva et al., 2011):

, где DIF — коэффициент динамического увеличения, f c, d — динамическая прочность на сжатие и f c, s — статическая прочность на сжатие.

DIF обычно имеет тенденцию сначала падать, а затем повышаться, как на Рисунке 7B. Возьмите две красные кривые (при давлении газа 0,25 МПа) на рисунках 7A, B в качестве примеров. Очевидно, что DIF имеет совершенно противоположную тенденцию изменения прочности на динамическое сжатие.При увеличении содержания CF от 0,0 до 1,5% динамическая прочность на сжатие увеличивалась, а DIF вместо этого снижалась. Когда содержание CF составляло более 1,5%, прочность на динамическое сжатие начинала снижаться, в то время как DIF начинал медленно расти. После того, как содержание CF превысило 2,0%, скорость снижения динамической прочности на сжатие и скорость роста DIF резко увеличились. Это продемонстрировало меньшее влияние содержания CF на динамическую прочность на сжатие, чем на статическую прочность на сжатие. Сравнение между динамической прочностью на сжатие и статической прочностью на сжатие также показало, что динамическая прочность на сжатие имеет меньшую скорость изменения, чем статическая прочность на сжатие.

Более того, порог содержания CF был меньше в случае более высоких давлений газа. Как показано на Рисунке 7B, порог содержания CF для начала увеличения DIF составлял 2% при давлении газа 0,2 МПа, но 1,5% при давлении газа 0,25 МПа и только 0,5% при самом высоком давлении газа 0,3 МПа. Это было приписано более низкой статической прочности на сжатие образцов с меньшим CF и более значительному динамическому эффекту при более высоком давлении газа.

Кривые напряжение-деформация

Кривые напряжения-деформации при динамическом сжатии (SS) можно разделить на три сегмента, как показано на рисунке 11A: восходящий сегмент (O – A), платформенный сегмент (A – B) и нисходящий сегмент (B). —С).На рисунках 11B – D представлены кривые SS образцов с различным содержанием CF при 3 давлениях газа, где шесть разных цветов представляют 6 содержаний CF: черный для 0,0%, красный для 0,5%, синий для 1,0%, зеленый для 1,5%, фиолетовый для 2,0%, а желтый — 2,5%.

РИСУНОК 11 . Кривые напряжение-деформация (A) Схема (B) Кривые SS при давлении газа 0,2 МПа (C) Кривые SS при давлении газа 0,25 МПа (D) Кривые SS при давлении газа 0.3 МПа.

В восходящем сегменте (O – A) все особи демонстрировали схожее поведение S – S. Напряжение увеличивалось приблизительно линейно до пикового значения (точка А) с высокой скоростью, указывая на то, что образец проявлял упругие свойства. При увеличении содержания CF пиковое напряжение (точка A) сначала увеличивалось до максимального значения, когда содержание CF составляло 1,5%, а затем упало до минимального значения, когда содержание CF составляло 2,5%. Одновременно пиковая деформация O – A (деформация в точке A) сначала уменьшалась, а затем увеличивалась с увеличением содержания CF.Это можно объяснить анализом микроструктуры в Dynamic Compression Strength .

Модуль упругости, то есть наклон O – A, как показано на рисунке 11A, на этом этапе был приблизительно равен σ p / ε a . Из рисунков 11B – D можно было наблюдать, что модуль упругости сначала увеличивался, а затем уменьшался с увеличением содержания CF. Модуль упругости при давлении газа 0,25 МПа (т.е., наклон кривых на фиг. 11C), например, сначала увеличивался до максимума, когда содержание CF увеличивалось до 1,5%, затем уменьшался до минимума, когда содержание CF увеличивалось до 2,5%. Увеличение модуля упругости было приписано улучшающему эффекту CF на характеристики бетона, в то время как уменьшение модуля упругости можно объяснить в соответствии с теорией композитных материалов (Swamy, 1970): в CF-пенобетоне модуль упругости матрицы бетона был скомпрометирован более низким модулем упругости CF.Когда содержание CF было не более 1,5%, CF ограниченно вычитал модуль упругости бетонной матрицы, но в основном улучшал его. В то время как после превышения CF уменьшающий эффект CF становился все более очевидным, постепенно компенсировал и перевешивал эффект улучшения и в конечном итоге приводил к окончательному снижению модуля упругости.

В сегменте платформы (A – B) трещины расширились до большей ширины, вызывая достаточное напряжение растяжения в CF, чтобы нейтрализовать напряжение сжатия в матрице.Таким образом, после точки А напряжение больше не показывало значительных изменений, в то время как деформация продолжала расти, что указывает на то, что пенобетон CF вступил в пластическую деформацию. Плато напряжений, соответствующее пиковому напряжению, сначала увеличивалось, а затем уменьшалось с увеличением содержания CF, с его значением при давлении газа 2,0 МПа, например, близким к 1,55, 1,75, 1,9, 2,5, 2,1 и 1,25 МПа, когда содержание CF было 0,0, 0,5, 1,0, 1,5, 2,0 и 2,5% соответственно.

Как показано на рисунке 11A, ширина плато напряжений A – B (т.е.е., ε b минус ε a ) можно использовать для оценки способности образца к пластической деформации. Возьмем в качестве примера кривые SS на рис. 11C, ширина плато при давлении газа 2,5 МПа сначала увеличивалась, а затем уменьшалась с увеличением содержания CF. Это указывает на то, что пластичность бетонной матрицы улучшилась с соответствующим количеством вовлеченного CF, но была уменьшается при избытке CF. Это было связано с тем, что характеристики соединения CF с матрицей сначала улучшались, а затем ослаблялись с увеличением содержания CF, что также можно объяснить анализом микроструктуры, разработанным в Dynamic Compression Strength .

В нисходящем сегменте (B – C) кривая начала снижаться после точки B с уменьшением напряжения и увеличением деформации, что свидетельствует о том, что образец теряет свою несущую способность. Это произошло потому, что по мере дальнейшего развития трещин CF вырывался из матрицы или разрывался, что приводило к нарушению соединения между CF и матрицей. Более того, из рисунков 11B – D можно было наблюдать, что ширина O – C (то есть общая деформация), представляющая динамическую деформационную способность CF-пенобетона, увеличивалась с повышением давления газа, что было связано с деформацией эффект скорости, упомянутый в Dynamic Compression Strength .

Поглощение энергии

Динамическое поглощение энергии сжатия, значение которого равно площади под кривой S-S, было рассчитано по формуле. 9 (Su et al., 2010):

, где S — поглощение энергии, σ — напряжение, ε — деформация и ε p — пиковая деформация. На рисунке 12A представлена ​​схема для расчета поглощения энергии.

РИСУНОК 12 . Способность к поглощению энергии (A) Схема (B) Поглощение энергии образцами.

Кривые изменения поглощения энергии в зависимости от содержания CF были получены и показаны на Рисунке 12B с тремя разными цветами, отличающими три давления газа: серый для 0,2 МПа, красный для 0,25 МПа и синий для 0,3 МПа.

Результаты испытаний показали, что поглощение энергии имело тенденцию к увеличению раньше и уменьшению позже с увеличением содержания CF. Возьмем для примера серую кривую (при давлении газа 0,2 МПа), поглощение энергии образцами составило 4,8, 5,1, 6,7, 7,9, 8,9 и 5.3 Дж с содержанием CF 0,0, 0,5, 1,0, 1,5, 2,0 и 2,5% соответственно. Было обнаружено, что образец без CF имел низкое поглощение энергии 4,8 Дж. После добавления CF поглощение энергии явно увеличивалось. Образец с содержанием CF 2,0% показал лучшее поглощение энергии 8,9 Дж. Скорость роста поглощения энергии составила 85,42% при увеличении содержания CF от 0,0 до 2,0%. Аналогично, для двух других изменяющихся кривых при давлении газа 0,25 и 0,3 МПа поглощение энергии достигло своих максимальных значений 14.9 и 22,4 Дж соответственно при содержании CF 1,5%.

Более того, в предыдущем исследовании статических характеристик пенобетона CF с тем же составом смеси было доказано, что CF оказывает такое же влияние на поглощение статической энергии сжатия пенобетоном. Результат показал, что статическое поглощение энергии сжатия увеличилось с 55,37 до 106,32 Дж при увеличении содержания CF с 0,0 до 2,0%. Темп роста составил 92,02%.

Все они подтвердили, что способность пенобетона к поглощению энергии может быть эффективно улучшена за счет добавления CF.

Однако рост поглощения энергии пошел вспять, когда содержание CF превышало пороговое значение. Продолжая пример с серой кривой, упомянутой выше, поглощение энергии образцом с содержанием CF 2,5% составило 5,3 Дж, что всего на 10,42% больше, чем у образца без CF. Это продемонстрировало, что улучшение способности пенобетона поглощать энергию с помощью CF сильно зависело от содержания CF. Вместо этого слишком большое количество CF может привести к снижению характеристик бетона.

Причина этого изменения заключалась в следующем: CF, распределенный в бетоне, образовывал мощную пространственную сетчатую структуру, которая препятствовала образованию и развитию трещин в бетоне и способствовала поглощению энергии во время распространения трещин. Однако, когда CF в бетоне был избыточным, текучесть пенобетона снижалась, и на границе раздела CF-бетонная матрица возникала явная концентрация напряжений, что приводило к ухудшению характеристик поглощения энергии. Это соответствовало предложенному анализу микроструктуры в Dynamic Compression Strength .

Кроме того, по серой кривой также можно было наблюдать, что увеличение поглощения энергии образцом с 0,5% содержанием CF было довольно незначительным по сравнению с образцом без CF. Синяя кривая (при давлении газа 0,3 МПа) показывает, что поглощение энергии пенобетоном может быть значительно улучшено с помощью небольшого количества CF. Это можно объяснить следующим образом: при более низком давлении газа (более низкой скорости деформации) небольшого количества включенного CF было недостаточно для полного подавления образования и расширения микротрещин внутри бетона.Между тем, явление концентрации напряжений, вызванное этими микротрещинами, ухудшило способность бетона поглощать энергию, что нивелировало улучшающий эффект CF на поглощение энергии. Однако при более высоком давлении газа (более высокой скорости деформации) время ударной нагрузки было заметно короче, поэтому концентрация напряжений не возникала до разрушения образца. Следовательно, более высокая скорость деформации была полезна для улучшения эффекта CF на способность бетона поглощать энергию.

Заключение

Это экспериментальное исследование доказало возможность и обоснованность использования CF в армировании бетона в качестве альтернативы обычным волокнам. Результаты выявили изменение закона характеристик пенобетона с содержанием CF и уточнили оптимальное содержание CF для улучшения динамических характеристик пенобетона. Таким образом, это исследование стало ценным справочным материалом по применению CF в качестве добавочного материала в бетоне.

(1) Добавление CF может эффективно улучшить способность пенобетона к пластической деформации.Образцы для испытаний претерпевают переход от хрупкости к пластичности при увеличении содержания CF и демонстрируют отличную целостность и пластичность при содержании CF 2,0%. Однако режимы разрушения образцов изменяются незначительно, если содержание CF превышает 2,0%.

(2) Соответствующее количество CF может улучшить динамическую прочность пенобетона на сжатие, в то время как избыток CF имеет противоположный эффект. Для получения максимальной динамической прочности на сжатие оптимальное содержание CF в данном исследовании составляет 1,5%.Более того, динамическая прочность на сжатие выше при более высоком давлении газа из-за эффекта скорости деформации. Кроме того, коэффициент динамического увеличения показывает обратную тенденцию изменения прочности на динамическое сжатие.

(3) Добавление соответствующего CF способствует более высокому модулю упругости и способности к пластической деформации пенобетона, но избыток CF имеет отрицательный эффект. Кроме того, деформация разрушения пенобетона CF увеличивается с ростом давления газа.

(4) При увеличении содержания CF значительно возрастает энергоемкость пенобетона.Однако образцы с чрезмерным CF показывают плохие характеристики поглощения энергии. Кроме того, CF лучше влияет на способность пенобетона поглощать энергию при более высоком давлении газа.

Заявление о доступности данных

Необработанные данные, подтверждающие выводы этой статьи, будут предоставлены авторами без излишних оговорок.

Вклад авторов

JL отвечал за разработку схемы эксперимента, выполнение тестов, анализ данных и написание оригинальной рукописи.JZ и LZ отвечали за руководство схемой эксперимента, теоретическое руководство и редактирование рукописи. ZL и ZJ отвечали за участие в разработке экспериментальной схемы, выполнении испытаний и анализе данных.

Конфликт интересов

Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могли бы быть истолкованы как потенциальный конфликт интересов.

Благодарности

Авторы выражают благодарность Национальному фонду естественных наук Китая (проект No.51608137) и Фонду развития инновационных способностей аспирантов Университета Гуанчжоу (проект № 2019GDJC-M38) за финансовую поддержку, которая помогла нам завершить эксперимент, описанный в этой статье.

Ссылки

Али, М., Лю, А., Соу, Х., и Чоу, Н. (2012). Механические и динамические свойства бетона, армированного кокосовым волокном. Построить. Строить. Матер. 30 (30), 814–825. doi: 10.1016 / j.conbuildmat.2011.12.068

CrossRef Полный текст | Google Scholar

Calado, V., Баррето, Д. У., и Далмейда, Дж. Р. (2000). Влияние химической обработки на структуру и морфологию волокон кокосового волокна. J. Mater. Sci. Lett. 19 (23), 2151–2153. doi: 10.1023 / a: 1026743314291

CrossRef Полный текст | Google Scholar

Дансо, Х. и Ману, Д. (2020). Влияние кокосовых волокон и извести на свойства грунтово-цементного раствора. Шпилька корпуса. Констр. Матер. 12, e00316. doi: 10.1016 / j.cscm.2019.e00316

CrossRef Полный текст | Google Scholar

Дэвис, Э.Д. Х. и Хантер С. С. (1963). Испытание твердых тел на динамическое сжатие методом разделенного давления Хопкинсона. J. Mech. Phys. Твердый. 11 (3), 155–179. doi: 10.1016 / 0022-5096 (63)

-4

CrossRef Полный текст | Google Scholar

Эткин А., Фоли К. Дж. И Гольдман Дж. Х. (2010). Влияние двойных добавок летучей золы и вспученного перлита на свойства пенобетона. Зола уноса Comp. Util. , 36 (25), 1482–1484. DOI: 10.1103 / PhysRevLett.36.1482

Google Scholar

Silva, F.d. А., Батлер, М., Меччерин, В., Чжу, Д., и Мобашер, Б. (2011). Влияние скорости деформации на растяжение текстильного бетона при статической и динамической нагрузке. Mater. Sci. Англ. 528 (3), 1727–1734. doi: 10.1016 / j.msea.2010.11.014

CrossRef Полный текст | Google Scholar

Фрю Д. Дж., Форрестол М. Дж. И Чен В. (2001). Метод разделенной планки давления Хопкинсона для определения данных о напряжении-деформации сжатия для горных материалов. Exp. Мех. 41 (1), 40–46.doi: 10.1007 / bf02323102

CrossRef Полный текст | Google Scholar

Грей, Г. Т. И. (2000). Классические испытания давлением на стержне сплит-Хопкинсона. мех. Контрольная работа. Eval. 8, 462–476. doi: 10.31399 / asm.hb.v08.a0003296

CrossRef Полный текст | Google Scholar

Кирсли, Э. П., и Уэйнрайт, П. Дж. (2001). Влияние высокого содержания летучей золы на прочность пенобетона на сжатие. Цемент Конкр. Res. 31 (1), 105–112. doi: 10.1016 / s0008-8846 (00) 00430-0

CrossRef Полный текст | Google Scholar

Кудяков А.И., Стешенко А.Б. (2015). Усадочная деформация цементного пенобетона. IOP Conf. Сер. Матер. Sci. Eng , 71 (1), 012019. doi: 10.1088 / 1757-899x / 71/1/012019

CrossRef Полный текст | Google Scholar

Ma, Y. P., Li, G. Y., and Yang, L. X. (2012). Влияние кажущейся плотности и плотности полипропиленового волокна на усадочные свойства пенобетона при высыхании. Mater. Ред. , 026 (006), 121–125. DOI: 10.3969 / j.issn.1005-023X.2012.06.033

Google Scholar

Mohamad, N., Иман, М. А., Отуман Мидин, М. А., Самад, А. А., Росли, Дж. А., и Ноорвирдавати, А. (2018). Механические свойства и поведение при изгибе легкого пенобетона с кокосовым волокном. IOP Conf. Сер. Earth Environ. Sci. 140, 012140. doi: 10.1088 / 1755-1315 / 140/1/012140

CrossRef Полный текст | Google Scholar

Raiyani, S., Morbia, U., and Karanjiya, P. (2016). «Анализ армированного биоволокном бетона с помощью XRD и SEM», 7-я национальная конференция по новым перспективам технологий в 21 веке, Вадодара, Индия, 8–9 апреля 2016 г.

Google Scholar

Шанг, С. С., и Сонг, X. Б. (2016). Экспериментальные исследования механических характеристик железобетона с углеродными нанотрубками. Заявл. Мех. Матер. 858, 173–178. doi: 10.4028 / www.scientific.net / amm.858.173

CrossRef Полный текст | Google Scholar

Шен, Х. Р., Ше, Ю. Х. и Гао, П. У. (2012). Влияние полипропиленовой фибры на характеристики бетонного покрытия. Amministrare 178–181, 1099–1103. DOI: 10.4028 / www.scientific.net / amm.178-181.1099

CrossRef Полный текст | Google Scholar

Su, H. Y., Xu, J. Y. и Li, M. (2010). Энергопоглощающие свойства бетона, армированного керамическими волокнами. Adv. Матер. Res. 168–170, 1970–1975. doi: 10.4028 / www.scientific.net / amr.168-170.1970

CrossRef Полный текст | Google Scholar

Sun, X., Zhao, K., Li, Y., Huang, R., Ye, Z., Zhang, Y., et al. (2018). Исследование влияния скорости деформации и фибробетона на динамическое поведение стального фибробетона. Построить. Строить. Матер. 158, 657–669. doi: 10.1016 / j.conbuildmat.2017.09.093

CrossRef Полный текст | Google Scholar

Свами, П. А. В. Б. (1970). Эффективный вывод в модели случайной регрессии коэффициентов. Econometrica 38, 311–323. doi: 10.2307 / 12

CrossRef Полный текст | Google Scholar

Uygunolu, T. (2008). Исследование микроструктуры и поведения при изгибе сталефибробетона. Mater. Struct. 41 (8), 1441–1449.doi: 10.1617 / s11527-007-9341-y

CrossRef Полный текст | Google Scholar

Ван, Х. У. (2011). Влияние полипропиленовой фибры на механические свойства бетона, содержащего золу. Adv. Magn. Резон. 346, 26–29. doi: 10.4028 / www.scientific.net / amr.346.26

CrossRef Полный текст | Google Scholar

Ван С., Чжан М. Х. и Квек С. Т. (2011). Влияние размера образца на статическую прочность и коэффициент динамического увеличения высокопрочного бетона по испытаниям ШПБ. J. Test. Eval. 39 (5), 898–907. doi: 10.1520 / jte103370

CrossRef Полный текст | Google Scholar

Wang, W., and Chouw, N. (2017). Поведение бетона, армированного кокосовым волокном (CFRC) при ударной нагрузке. Построить. Строить. Матер. 134, 452–461. doi: 10.1016 / j.conbuildmat.2016.12.092

CrossRef Полный текст | Google Scholar

Ян, С., Гао, Д., и Чжао, Дж. (2010). Микроструктура фибробетона с шлаковой способностью после воздействия высоких температур. J. Southeast Univ. 40 (2), 102–106.

CrossRef Полный текст | Google Scholar

Zhan, B.G., Guo, J. L., and Lin, X. S. (2009). Свойства пенобетона с армированием стекловолокном. J. Hefei Univ. Technol. (Естественные науки) 32 (2), 226–229. DOI: 10.1109 / CLEOE-EQEC.2009.5194697

Google Scholar

Zhang, P., Li, Q., and Zhang, H. (2011). Комбинированное влияние полипропиленовой фибры и микрокремнезема на механические свойства бетонного композита, содержащего летучую золу. J. Reinforc. Пласт. Compos. 30 (16), 1349–1358. doi: 10.1177 / 0731684411425974

CrossRef Полный текст | Google Scholar

Zhang, Q., Liu, G. L., and Cheng, C.H. (2015). Механические экспериментальные исследования высокопрочного бетона после воздействия высоких температур на основе XRD. China Concr. Цемент Прод . 3, 9–11. doi: 10.19761 / j.1000-4637.2015.03.003

CrossRef Полный текст | Google Scholar

Zhou, J., Kang, T., and Wang, F. (2019). Пористая структура и прочность бетона из вторичного волокна. J. Eng. Волокна Фабр. 14 (5), 155892501987470. doi: 10.1177 / 1558925019874701

CrossRef Полный текст | Google Scholar

Zhu, D. M., Huo, Y. Z., and Li, S. Y. (2017). Об экспериментальном исследовании морозостойкости каучукового фибробетона и пористой структуры . Баяннур, Китай: Форум колледжей Хетао.

CrossRef Полный текст | Google Scholar

Общие вопросы и ответы — Решения Geofill Cellular Concrete & Foam Technology Solutions

Что такое ячеистый бетон?
  • Ячеистый бетон обычно определяют как «легкий вяжущий материал, который содержит стабильные воздушные или газовые ячейки, равномерно распределенные по смеси в объеме более 20%.«Ячеистый бетон можно рассматривать как бетон, в котором используется стабильная структура с воздушными ячейками, а не традиционный заполнитель.
  • Международный американский институт бетона (ACI-116R-90) предлагает следующее определение:
    «Бетон, ячеистый: легкий продукт, состоящий из портландцемента, цементно-кремнеземного, цементно-пуццоланового, известкового пуццолана, известково-кремнеземных паст или паст, содержащих смеси этих ингредиентов и имеющий однородную пустотную или ячеистую структуру, полученную с помощью газообразования. химикаты или пенообразователи.”
Ячеистый бетон Geofill — это то же самое, что и легкий бетон?

  • № Ячеистый бетон Geofill весит значительно меньше обычного «легкого» бетона. По определению «легкий» бетон — это бетон, состоящий из заполнителей, которые легче обычных каменных заполнителей. Обычно легкий бетон имеет плотность + 120 фунтов / куб. Фут. Напротив, в ячеистом бетоне Geofill вместо заполнителя используется структура с внутренними воздушными ячейками, и его плотность составляет от 20 до 90 фунтов./ куб. футы
  • Американский институт бетона International (ACI -116R-90) предлагает следующее определение:
    «Бетон, легкий — бетон существенно меньшей плотности, чем бетон, изготовленный из заполнителей нормальной плотности».
Есть ли усадка?
  • Фактически, усадка минимальная и составляет менее 0,6%. Кроме того, любое растрескивание материала не влияет на несущую способность. (Аналогично почвам)
Сколько стоит ячеистый бетон Geofill?
  • Экономичный ячеистый бетон Geofill различается по цене в зависимости от географического региона и требований применения.Мы будем рады помочь вам с расценками на нашу продукцию.

СВЯЖИТЕСЬ С НАМИ СЕГОДНЯ!

Пожалуйста, заполните все поля

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *