Что такое теплопроводность это: Теплопроводность — это… Что такое Теплопроводность?

Содержание

Теплопроводность — это… Что такое Теплопроводность?

Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела ( атомами, молекулами, электронами и т.п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал площадью 1 кв.м за единицу времени (секунду) при единичном температурном градиенте. Данная численная характеристика используется для расчета теплопроводности для калибрования и охлаждения профильных изделий.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где  — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (иногда называемый просто теплопроводностью),  — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где  — полная мощность тепловых потерь,  — площадь сечения параллелепипеда,  — перепад температур граней,  — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

Коэффициент теплопроводности вакуума

Коэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, тепло в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Связь с электропроводностью

Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:

где  — постоянная Больцмана,  — заряд электрона.

Коэффициент теплопроводности газов

Коэффициент теплопроводности газов определяется формулой[2]

Где: i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, M — молярная масса, T — абсолютная температура, d — эффективный диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из не радиоактивных газов — у ксенона).

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т.п. Инерционность в уравнения переноса первым ввел Максвелл[3], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[4]

Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ

МатериалТеплопроводность, Вт/(м·K)
Графен(4840±440) — (5300±480)
Алмаз1001—2600
Графит278,4—2435
Карбид кремния490
Серебро430
Медь382—390
Оксид бериллия370
Золото320
Алюминий202—236
Нитрид алюминия200
Нитрид бора180
Кремний150
Латунь97—111
Хром93,7
Железо92
Платина70
Олово67
Оксид цинка54
Сталь47
Кварц8
Стекло1-1,15
КПТ-80,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Силиконовое масло0,16
Пенобетон0,14—0,3
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Вата0,055
Воздух (300 K, 100 кПа)0,026
Вакуум (абсолютный)0 (строго)

другие вещества

МатериалТеплопроводность, Вт/(м·K)
Кальций201
Бериллий201
Вольфрам173
Магний156
Родий150
Иридий147
Молибден138
Рутений117
Хром93,9
Осмий87,6
Титан21,9
Тефлон0,25
Бумага0,14
Полистирол0,082
Шерсть0,05
Минеральная вата0,045
Пенополистирол0,04
Стекловолокно0,036
Пробковое дерево0,035
Пеноизол0,035
Каучук вспененный0,03
Аргон0,0177
Аэрогель0,017
Ксенон0,0057

На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы). Так же в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепла, даже если зазоры представляют собой идеальный вакуум.

Примечания

См. также

Ссылки

Теплопроводность — это… Что такое Теплопроводность?

Теплопрово́дность — это процесс переноса внутренней энергии от более нагретых частей тела (или тел) к менее нагретым частям (или телам), осуществляемый хаотически движущимися частицами тела ( атомами, молекулами, электронами и т.п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

Численная характеристика теплопроводности материала равна количеству теплоты, проходящей через материал площадью 1 кв.м за единицу времени (секунду) при единичном температурном градиенте. Данная численная характеристика используется для расчета теплопроводности для калибрования и охлаждения профильных изделий.

Исторически считалось, что передача тепловой энергии связана с перетеканием теплорода от одного тела к другому. Однако более поздние опыты, в частности, нагрев пушечных стволов при сверлении, опровергли реальность существования теплорода как самостоятельного вида материи. Соответственно, в настоящее время считается, что явление теплопроводности обусловлено стремлением объектов занять состояние более близкое к термодинамическому равновесию, что выражается в выравнивании температуры.

Закон теплопроводности Фурье

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

где  — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси,  — коэффициент теплопроводности (иногда называемый просто теплопроводностью),  — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad T (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье.[1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

где  — полная мощность тепловых потерь,  — площадь сечения параллелепипеда,  — перепад температур граней,  — длина параллелепипеда, то есть расстояние между гранями.

Коэффициент теплопроводности измеряется в Вт/(м·K).

Коэффициент теплопроводности вакуума

Коэффициент теплопроводности вакуума почти ноль (чем глубже вакуум, тем ближе к нулю). Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, тепло в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотери стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Связь с электропроводностью

Связь коэффициента теплопроводности с удельной электрической проводимостью в металлах устанавливает закон Видемана — Франца:

где  — постоянная Больцмана,  — заряд электрона.

Коэффициент теплопроводности газов

Коэффициент теплопроводности газов определяется формулой[2]

Где: i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i=5, для одноатомного i=3), k — постоянная Больцмана, M — молярная масса, T — абсолютная температура, d — эффективный диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из не радиоактивных газов — у ксенона).

Обобщения закона Фурье

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье не применим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т.п. Инерционность в уравнения переноса первым ввел Максвелл[3], а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом:[4]

Если время релаксации пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ

МатериалТеплопроводность, Вт/(м·K)
Графен(4840±440) — (5300±480)
Алмаз1001—2600
Графит278,4—2435
Карбид кремния490
Серебро430
Медь382—390
Оксид бериллия370
Золото320
Алюминий202—236
Нитрид алюминия200
Нитрид бора180
Кремний150
Латунь97—111
Хром93,7
Железо92
Платина70
Олово67
Оксид цинка54
Сталь47
Кварц8
Стекло1-1,15
КПТ-80,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Силиконовое масло0,16
Пенобетон0,14—0,3
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Вата0,055
Воздух (300 K, 100 кПа)0,026
Вакуум (абсолютный)0 (строго)

другие вещества

МатериалТеплопроводность, Вт/(м·K)
Кальций201
Бериллий201
Вольфрам173
Магний156
Родий150
Иридий147
Молибден138
Рутений117
Хром93,9
Осмий87,6
Титан21,9
Тефлон0,25
Бумага0,14
Полистирол0,082
Шерсть0,05
Минеральная вата0,045
Пенополистирол0,04
Стекловолокно0,036
Пробковое дерево0,035
Пеноизол0,035
Каучук вспененный0,03
Аргон0,0177
Аэрогель0,017
Ксенон0,0057

На практике нужно также учитывать проводимость тепла за счет конвекции молекул и проникаемости излучений. Например, при полной нетеплопроводности вакуума, тепло может передаваться за счет излучения (пример — Солнце, установки инфракрасного излучения). А газ или жидкость могут обмениваться нагретыми или охлажденными слоями самостоятельно или искусственно (пример — фен, греющие вентиляторы). Так же в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепла, даже если зазоры представляют собой идеальный вакуум.

Примечания

См. также

Ссылки

Что такое теплопроводность и коэффициент теплопроводности. |

Теплопроводность.

Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Можно сказать проще, теплопроводность – это  способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой. Такой процесс может происходить в твердых, жидких и газообразных веществах.

На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем «абстрактный дом». В «абстрактном доме» стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С. Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.

Чтобы поддерживать температуру в доме 25 °С, нагреватель должен  постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.

 

Коэффициент теплопроводности.

Количество тепла, которое проходит через стены (а по научному — интенсивность теплопередачи за счет теплопроводности) зависит от разности температур (в доме и на улице), от площади стен и теплопроводности материала, из которого сделаны эти стены.

Для количественной оценки теплопроводности существует коэффициент теплопроводности материалов. Этот коэффициент отражает свойство вещества проводить тепловую энергию. Чем больше значение коэффициента теплопроводности материала, тем лучше он проводит тепло. Если мы собираемся утеплять дом, то надо выбирать материалы с небольшим значением этого коэффициента. Чем он меньше, тем лучше. Сейчас  в качестве материалов для утепления зданий  наибольшее распространение получили утеплители из минеральной ваты, и различных пенопластов. Набирает популярность новый материал с улучшенными теплоизоляционными качествами — Неопор.

Коэффициент теплопроводности материалов обозначается буквой ? (греческая строчная буква лямбда)  и выражается в Вт/(м2*К). Это означает, что если взять стену из кирпича, с коэффициентом теплопроводности 0,67 Вт/(м2*К), толщиной 1 метр и площадью 1 м2., то при разнице температур в 1 градус, через стену будет проходить 0,67 ватта тепловой энергии. Если разница температур будет 10 градусов, то будет проходить уже 6,7 ватта. А если при такой разнице температур  стену сделать 10 см, то потери тепла будут уже 67 ватт. Подробней о методике расчета теплопотерь зданий можно посмотреть здесь.

Следует отметить, что значения коэффициента теплопроводности материалов указываются для толщины материала в 1 метр. Чтобы определить теплопроводность материала для любой другой толщины, надо коэффициент теплопроводности разделить на нужную толщину, выраженную в метрах.

В строительных нормах и расчетах часто используется понятие «тепловое сопротивление материала». Это величина обратная теплопроводности.  Если, на пример, теплопроводность пенопласта толщиной 10 см — 0,37 Вт/(м2*К), то его тепловое сопротивление будет равно 1 / 0,37 Вт/(м2*К) = 2,7 (м2*К)/Вт.

 

 

Коэффициент теплопроводности материалов.

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

МатериалКоэфф. тепл. Вт/(м2*К)
Алебастровые плиты0,470
Алюминий230,0
Асбест (шифер)0,350
Асбест волокнистый0,150
Асбестоцемент1,760
Асбоцементные плиты0,350
Асфальт0,720
Асфальт в полах0,800
Бакелит0,230
Бетон на каменном щебне1,300
Бетон на песке0,700
Бетон пористый1,400
Бетон сплошной1,750
Бетон термоизоляционный0,180
Битум0,470
Бумага0,140
Вата минеральная легкая0,045
Вата минеральная тяжелая0,055
Вата хлопковая0,055
Вермикулитовые листы0,100
Войлок шерстяной0,045
Гипс строительный0,350
Глинозем2,330
Гравий (наполнитель)0,930
Гранит, базальт3,500
Грунт 10% воды1,750
Грунт 20% воды2,100
Грунт песчаный1,160
Грунт сухой0,400
Грунт утрамбованный1,050
Гудрон0,300
Древесина — доски0,150
Древесина — фанера0,150
Древесина твердых пород0,200
Древесно-стружечная плита ДСП0,200
Дюралюминий160,0
Железобетон1,700
Зола древесная0,150
Известняк1,700
Известь-песок раствор0,870
Ипорка (вспененная смола)0,038
Камень1,400
Картон строительный многослойный0,130
Каучук вспененный0,030
Каучук натуральный0,042
Каучук фторированный0,055
Керамзитобетон0,200
Кирпич кремнеземный0,150
Кирпич пустотелый0,440
Кирпич силикатный0,810
Кирпич сплошной0,670
Кирпич шлаковый0,580
Кремнезистые плиты0,070
Латунь110,0
Лед 0°С2,210
Лед -20°С2,440
Липа, береза, клен, дуб (15% влажности)0,150
Медь380,0
Мипора0,085
Опилки — засыпка0,095
Опилки древесные сухие0,065
ПВХ0,190
Пенобетон0,300
Пенопласт ПС-10,037
Пенопласт ПС-40,040
Пенопласт ПХВ-10,050
Пенопласт резопен ФРП0,045
Пенополистирол ПС-Б0,040
Пенополистирол ПС-БС0,040
Пенополиуретановые листы0,035
Пенополиуретановые панели0,025
Пеностекло легкое0,060
Пеностекло тяжелое0,080
Пергамин0,170
Перлит0,050
Перлито-цементные плиты0,080
Песок 0% влажности0,330
Песок 10% влажности0,970
Песок 20% влажности1,330
Песчаник обожженный1,500
Плитка облицовочная1,050
Плитка термоизоляционная ПМТБ-20,036
Полистирол0,082
Поролон0,040
Портландцемент раствор0,470
Пробковая плита0,043
Пробковые листы легкие0,035
Пробковые листы тяжелые0,050
Резина0,150
Рубероид0,170
Сланец2,100
Снег1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб. м, 15% влажности)0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности)0,230
Сталь52,0
Стекло1,150
Стекловата0,050
Стекловолокно0,036
Стеклотекстолит0,300
Стружки — набивка0,120
Тефлон0,250
Толь бумажный0,230
Цементные плиты1,920
Цемент-песок раствор1,200
Чугун56,0
Шлак гранулированный0,150
Шлак котельный0,290
Шлакобетон0,600
Штукатурка сухая0,210
Штукатурка цементная0,900
Эбонит0,160

Теплопроводность. Просто о сложном.: Новости и статьи: Строительство и технологии: Разумная Недвижимость

Статья. 30.10.2019


При выборе качественного теплоизоляционного материала потребитель должен принимать во внимание целый ряд параметров, среди которых неизменно присутствует показатель теплопроводности. Высокой или низкой должна быть теплопроводность, что такое «лямбда», на какие показатели теплопроводности ориентироваться – ответы на эти и другие самые распространенные вопросы, возникающие при покупке утеплителя, вы найдете в данной статье.


Слово «теплопроводность» или еще более запутанное «лямбда» знакомо каждому школьнику из курса физики за восьмой класс. Однако со временем информация, которой мы не пользуемся, забывается. Попробуем освежить в памяти эти несложные и очень полезные знания.


Теплопроводность, как уже было сказано выше, — одно из ключевых понятий в современном строительстве, особенно когда речь заходит о теплоизоляционных материалах. От теплопроводности зависит толщина вашей стены или кровли, вес всего дома, а следовательно, и прочность (несущая способность) фундамента, долговечность конструкций и многое другое.


Современное определение теплопроводности – понятие комплексное. И состоит из нескольких составных частей, отвечающих за перенос тепла (теплообмен).



На первый взгляд формула кажется пугающей, но на самом деле все просто.


Суммарная или итоговая теплопроводность состоит из теплопроводности за счет конвекции, теплопроводности твердой и газообразной фазы, а также теплопроводности, учитывающей теплообмен за счет излучения.


Запутались еще сильнее? Тогда по порядку. Разберем каждый элемент этой формулы более подробно.


Теплообмен (или теплопередача) – это способ изменения внутренней энергии без совершения работы над телом или самим телом.


Теплопередача всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.


Из курса физики нам известно, что теплообмен включает в себя три вида передачи тепла: теплопроводность, конвекцию и излучение.



Теплопроводность — явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их

непосредственном контакте.


Если вы опустите ложку в стакан с горячим напитком, нагреется не только та часть ложки, которая погружена в жидкость, но и та ее часть, которая находится над водой.



Теплопроводность различных веществ неодинакова, она может быть плохой (низкой) и хорошей (высокой). Хорошая теплопроводность у металлов. Плохая — у шерсти, дерева и пластиков. Самым плохим проводником тепла является вакуум.



Для примера вспомните кухонную посуду: кастрюли и сковородки. Вы вряд ли станете снимать металлическую кастрюлю, полную вкусного супа, с горячей плиты голыми руками, потому что существует реальная опасность обжечь руки. Вместо этого вы используете кухонное полотенце, силиконовые или тряпичные прихватки, то есть те материалы, которые плохо проводят тепло.


Именно поэтому «правильные» кастрюли и сковородки снабжены пластмассовыми или деревянными ручками, плохо проводящими тепло. Вспомнить хотя бы старую бабушкину сковородку с деревянной ручкой: сковородка горячая, а за ручку схватиться можно безо всяких прихваток.


Как объясняется это явление? Рассмотрим на примере нагревания металлического стержня (или ложки из примера со стаканом).



В металле, как и во всех твердых телах, молекулы совершают колебательные движения около некоторых положений равновесия. Скорость колебательного движения молекул металла при нагревании увеличивается в той части, которая ближе расположена к пламени или источнику тепла. Эти молекулы, взаимодействуя с соседними молекулами, передают им часть своей энергии. В результате чего повышается температура отрезка стержня. Затем увеличивается скорость колебательного движения молекул в следующих отрезках стержня и так далее, до тех пор, пока не прогреется весь стержень. Именно поэтому вакуум обладает самой плохой теплопроводностью: в нем практически отсутствуют молекулы, которые бы передавали энергию друг другу. Важно отметить, что сами молекулы, передавая кинетическую энергию, не меняют свое местоположение, то есть само вещество не перемещается.


С первым понятием разобрались, посмотрим, что же дальше.


 Следующая составляющая теплопроводности – это конвекция. У многих из вас на слуху такой прибор, как «конвектор». А вот почему он так называется, наверное, знает далеко не каждый. Хотя логично предположить, что название свое он получил за принцип работы – конвекцию.


Из курса физики следует, что конвекция — это перенос энергии струями жидкости или газа. Если в случае с теплопроводностью при теплообмене происходит перенос энергии, то при конвекции происходит перенос именно вещества. 


Конвекторы (как и любые другие отопительные приборы) нагревают окружающий воздух, вследствие чего температура в комнате повышается и вам становится тепло. При этом струи теплого воздуха поднимаются вверх, а струи холодного опускаются вниз. Аналогично происходит процесс нагревания воды в чайнике: горячая вода поднимается, а холодная опускается на ее место. Этот же принцип заложен в отопительной системе для обогрева домов.


Различают два вида конвекции: естественная и вынужденная.


Нагревание воздуха в комнате солнечными лучами – это пример естественной конвекции. А вот если воздух нагревается тепловым вентилятором, то это уже вынужденная конвекция. Вентилятор заставляет воздух в комнате двигаться, при этом нагревая его до необходимой температуры. В качестве других примеров конвекции можно привести холодные и теплые морские течения, а также образование и движение облаков и ветров.


Переходим к следующей составляющей: излучение (лучистый теплообмен). 



Излучение – это способ переноса энергии от одного тела к другому в виде электромагнитных волн. Как правило, это инфракрасное (IR) излучение. Этот принцип заложен еще в одном уникальном приборе – инфракрасном обогревателе.


Принцип его работы построен на том, что любое нагретое тело является источником излучения. Самый впечатляющий пример – Солнце. Пример поменьше – костер, распространяющий тепло на достаточно большое расстояние. В случае с обогревателем окружающие предметы нагреваются за счет электромагнитного излучения и в комнате становится тепло.


Этот вид теплообмена отличается тем, что может происходить и в вакууме. Ведь солнечная энергия как-то доходит до Земли.



Примечательно, что темные тела лучше поглощают и отдают энергию. Если необходимо максимально нагреть материал, его окрашивают в черный цвет. В качестве примера можно привести солнечные коллекторы (водонагреватели), которые устанавливаются на крышах домов. Эти устройства позволяют собирать тепло от солнца и нагревать теплоноситель, который затем передает тепло внутрь дома для обогрева помещений или нагрева воды.



Хуже всего поглощают энергию светлые материалы или материалы с отражающей способностью. Способность светлых тел хорошо отражать лучистую энергию учитывают в самых разных сферах: при строительстве самолетов, при возведении высотных зданий в жарких странах, даже при выборе цвета одежды в теплое время года. На окнах часто применяют металлизированные пленки, которые частично отражают солнечное тепло и спасают помещение от перегрева.


С базовыми принципами разобрались. Пришло время вернуться к нашей формуле



Её разбор проведем на примере теплоизоляционного материала из пенополиизоцианурата (ПИР/PIR) — LOGICPIR.


LOGICPIR – это инновационный утеплитель, обладающий уникальными показателями теплопроводности – всего 0,022 Вт/м*К, позволяющий добиться максимальной экономии пространства при минимальной толщине теплоизоляции. Кроме того, PIR-плиты не впитывают влагу, тем самым предотвращая образование конденсата и надежно защищая ваш дом от появления плесенных грибов, клещей и бактерий, представляющих опасность для здоровья. LOGICPIR относится к новому поколению полиуретанов, окружающих нас повсеместно: начиная от деталей интерьера автомобилей, матрацев и обуви и заканчивая медициной, где самая поразительная сфера их применения – изготовление протезов для сердечно-сосудистой системы. Стоит ли говорить, что материал экологически безопасен, что подтверждено целым рядом сертификатов и заключений.


Итак, вернемся к теплопроводности.


Структурная и газовая теплопроводность – это теплопроводность компонентов, из которых состоит материал, а именно:


·       твердой фазы – теплопроводности полимерного каркаса с множеством ячеек с очень тонкими, но прочными стенками;


·       газообразной фазы – теплопроводность газа, который находится в ячейках.



Если сравнивать теплоизоляцию PIR с пеностеклом или пенобетоном, то по структуре эти материалы схожи. Все они ячеистые и наполнены газом. Однако теплопроводности этих материалов будут отличаться.  


Стекло и бетон, в отличие от пластиков, проводят тепло интенсивнее, соответственно, пеностекло и пенобетон обладают большей теплопроводностью и их показатели в качестве теплоизоляторов несколько хуже. Даже полимеры отличаются друг от друга теплопроводностью.


Как было сказано ранее, представленные материалы ячеистые и в каждом находятся какие-то газы. В пеностекле и пенобетоне это, как правило, окружающий воздух, в PIR – инертные газы. Хуже всего тепло проводят инертные газы, содержание молекул в 1 м3 очень маленькое, расстояние между молекулами очень большое, поэтому передать энергию между молекулами довольно сложно. Намного лучше тепло проводит воздух, поскольку он состоит из смеси разных газов, молекул очень много и все они друг с другом взаимодействуют.


Конвекционную составляющую у мелкоячеистой теплоизоляции обычно не рассматривают, поскольку размер ячеек теплоизоляции PIR ничтожно мал (меньше 1мм) и газ в этих ячейках неподвижен.


Последняя составляющая – излучение. Снизить ее влияние можно за счет применения дополнительных материалов, способных отражать тепловой поток. Для этого можно окрасить материал, скажем, в белый цвет. В случае с теплоизоляционными плитами PIR за отражение тепла отвечает фольга, которая покрывает материал с обеих сторон. Помимо функции отражения тепла фольга также несет защитную функцию с точки зрения утечки вспенивающего газа. По своим свойствам фольга является практически идеальным пароизоляционным материалом, а значит, способна задерживать миграции газов во внешнюю среду из ячеек теплоизоляции.


В процессе эксплуатации легкие инертные газы замещаются на более тяжелый окружающий воздух с хорошей теплопроводностью. Это происходит у всех пористых материалов за счет диффузных процессов.


Рассмотрим в качестве примера обычный воздушный шарик, наполненный гелием, который можно сравнить с одной ячейкой вспененной теплоизоляции. Новый шарик все время стремится улететь высоко в небо. Если утром он еще висел под потолком, то со временем он постепенно опустится и будет висеть в центре комнаты, а еще через несколько часов лежать на полу. Т.е. все это время газ за счет диффузии медленно выходит из шарика, и тот теряет свою «летучесть».



Так же и с теплоизоляцией. «Шарики» (ячейки), которые ближе всего расположены к границе с окружающим воздухом постепенно изменяют свой газовый состав. Однако те «шарики», которые находятся глубоко в материале, делают это очень медленно или не делают вовсе, поскольку инертному газу очень сложно пройти огромное количество стенок соседних «шариков» и вырваться наружу.


Кроме того, поверхность теплоизоляции покрыта фольгой, препятствующей выходу газа, соответственно, теплопроводность материала (ее газовая составляющая) сохраняется.


Итоговую формулу теплопроводности PIR можно записать в виде:



Подведем итог. Теплоизоляция – это очень важный показатель. От нее зависит, насколько теплым будет ваш дом. У наиболее эффективной теплоизоляции все ее составляющие  должны быть как можно ниже. 


У современной изоляции на примере LOGICPIR это достигается за счет применения инертных газов, полимеров и специальных покрытий, отражающих тепловой поток. Уверены, что теперь вы не только сможете безошибочно выбрать теплоизоляционный материал, отвечающий самым высоким требованиям, но и поможете своим детям сдать физику на высший балл. 


Любезно предоставлено компанией ТЕХНОНИКОЛЬ.


Разумная Недвижимость

По информации портала. При использовании материала гиперссылка на Razned.ru обязательна.

Теплопроводность | Физика

Теплопроводность — это вид теплопередачи, при котором происходит непосредственная пе­редача энергии от частиц (молекул, атомов) более нагретой части тела к частицам его менее нагретой части.

Рассмотрим ряд опытов с нагревом твердого тела, жидкости и газа.

Закрепим в штативе толстую медную проволоку, а к проволоке прикрепим воском или плас­тилином несколько гвоздиков. При нагревании свободного конца проволоки в пламени спиртовки воск плавится, и гвоздики постепенно отпадают от проволоки. Причем сначала отпадают те, что находятся ближе к пламени, затем по очереди все остальные. Объясняется это следующим обра­зом. Сначала увеличивается скорость движения тех частиц металла, которые находятся ближе к пламени. Температура проволоки в этом месте повышается. При взаимодействии этих частиц с соседними скорость последних также увеличивается, в результате чего повышается температура следующей части проволоки. Затем увеличивается скорость движения следующих частиц и т. д., пока не прогреется вся проволока.

Следует помнить, что при теплопроводности само вещество не перемещается вдоль тела, пере­носится лишь энергия.

Рассмотрим теперь теплопроводность жидкостей. Возьмем пробирку с водой. Положим в нее кусочек льда и станем нагревать верхнюю часть пробирки. Вода у поверхности скоро закипит. Лед же на дне пробирки за это время почти не растает. Значит, у жидкостей теплопроводность невелика, за исключением ртути и жидких металлов.

Это объясняется тем, что в жидкостях молекулы расположены на больших расстояниях друг от друга, чем в твердых телах.

Исследуем теплопроводность газов. Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышко. Палец при этом долго не чувствует тепла.

Это связано с тем, что расстояние между молекулами газа еще больше, чем у жидкостей и твердых тел. Следовательно, теплопроводность газов еще меньше.

Итак, теплопроводность различных веществ различна.

Наибольшей теплопроводностью обладают металлы, особенно серебро и медь. Если теплопро­водность различных веществ сравнивать с теплопроводностью меди, то окажется, что у железа она меньше примерно в 5 раз, у воды — в 658 раз, у пористого кирпича — в 848 раз, у свежевыпав-шего снега — почти в 4000 раз, у ваты, древесных опилок и овечьей шерсти — почти в 10 ООО раз, а у воздуха она меньше примерно в 20 000 раз. Плохой теплопроводностью обладают также воло­сы, перья, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух. Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство). Объясняется это тем, что теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В пространстве, где нет частиц, теплопроводность осуществляться не может.

Если возникает необходимость предохранить тело от охлаждения или нагревания, то применя­ют вещества с малой теплопроводностью. Так, ручки для кастрюль, сковородок изготавливают из пластмассы. Дома строят из бревен или кирпича, обладающих плохой теплопроводностью, а зна­чит, предохраняют помещения от охлаждения. На применении вакуума в качестве теплоизоля­ционного «материала» основано устройство термоса, или сосуда Дьюара, который был изобретен в 1892 г. английским ученым Джеймсом Дьюаром.

понятие и коэффициент для некоторых сталей и сплавов

Для того чтобы проводить какую-либо работу с различными материалами, перед их обработкой обязательно нужно узнать все данные, касающиеся характеристик материала, его физические свойства.

Ниже будет рассмотрен такой материал, как сталь. Внимание будет заострено на такой способности материалов, как теплопроводность. Это показатель, который обязательно надо знать, если предполагается работа с любым материалом.

Понятие «теплопроводность»

Для начала следует разобраться в самом понятии «теплопроводность». Это поможет пользователю легче лавировать среди сухих цифр и оперировать ими. Для того чтобы провести определённую работу, следует основательно подойти к делу и разузнать все возможные характеристики того материала, с которым впоследствии будет работать пользователь.

Теплопроводностью называют такую способность различных материальных тел к теплообмену (переносу энергии) к менее нагретым частям тела от его более нагретых частей. Этот процесс возможен, благодаря различным частицам тела, которые хаотически движутся. Такими частицами являются:

  • молекулы;
  • атомы;
  • электроны и так далее.

Такой теплообмен возможен во всех телах, в которых наблюдается неоднородное распределение температурных показателей. Сам механизм переноса тепла будет напрямую зависеть от агрегатного состояния рассматриваемого материала.

Также термин «теплопроводность» применяется для обозначения количественной характеристики способности любого физического тела проводить тепло. Если сравнивать тепловые цепи с цепями электрическими, то такой термин является аналогом проводимости.

Для того чтобы охарактеризовать количественную способность физического тела проводить тепло, используется специальная величина, которая именуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, которое проходит через образец материала, обязательно однородного, единичной площади и единичной длины за единицу времени при единичной разнице температур. В известной всем системе СИ такая величина измеряется в Вт/(м*градус Цельсия).

Само явление теплопроводности зиждется на принципах, которые с лёгкостью объясняет молекулярно-кинетическая теория. Они заключаются в том, что нагретые молекулы двигаются намного быстрее, чем молекулы, пребывающие в своём обычном состоянии, поэтому при своём быстром хаотическом движении они способны влиять на другие молекулы, находящиеся в более холодных частях тела и передавать им своё тепло.

Теплопроводность стали

Для того чтобы оперировать полученными знаниями о теплопроводности материалов для последующей работы с ними, следует учитывать все существующие нюансы для отдельного физического тела.

Если говорить именно о стали, то следует помнить, что данная характеристика этого металла снижается, если содержит в себе примеси различного рода. Можно привести даже конкретные примеры, которые могут подтвердить этот общеизвестный факт. Например, если в стали увеличено содержание углерода, то это отрицательно сказывается на коэффициенте теплопроводности стали. У легированных сталей этот коэффициент ещё ниже из-за присадок.

Если рассматривать чистую сталь, не содержащую всяких примесей, то ей теплопроводность будет достаточно высока, как и у всех металлов. Составляет она около 70 Вт/(м*гр. Цельсия).

Если обратиться к показателям у углеродистых и высоколегированных сталей, то они существенно ниже, что в принципе неудивительно. Это объясняется наличием в их составе примесей, что понижает коэффициент теплопроводности. Кстати, следует помнить о том, что сам фактор термического воздействия может существенно повлиять на теплопроводность высоколегированных и углеродистых сталей. Дело в том, что при увеличении температуры, коэффициент этой величины таких сталей понижается.

Теплопроводность нескольких различных видов сталей

Тут будут представлены сухие цифры для того, чтобы пользователь мог сразу найти нужные для себя показатели коэффициента данной величины для некоторых марок сталей:

  • Коэффициент теплопроводности низкоуглеродистых сталей, которые применяются в производстве обычных труб, равен 54, 51, 47 (Вт/(м*гр. С) для 25, 125, 225 градусов по Цельсию соответственно.
  • Средний коэффициент углеродистых сталей, который можно высчитать при комнатной температуре, находится в диапазоне от 50 до 90 Вт/(М*гр. С).
  • Коэффициент теплопроводности для обычной стали, которая не содержит различных примесей, которые, в свою очередь, не могут никак повлиять на этот коэффициент, равен 64 Вт/(м*гр. С). Этот коэффициент несущественно изменяется при изменении термического воздействия, но точно не так сильно, как в случае с углеродистыми и легированными сталями.

Выводы

Для успешного процесса обработки любого материала очень важно знать все его физические свойства и характеристики. Это нужно для того, чтобы успешно проделать всю требуемую работу и получить нужный результат. Незнание характеристик может привести к неприятным последствиям.

Теплопроводность стали — очень важный момент, если предполагается работа с этим металлом. Следует помнить не только основной коэффициент теплопроводности обычной стали, но и коэффициенты этой величины у её сплавов. Они обладают другими свойствами, что может сделать работу с ними более трудной.

Мастер должен быть обладать знаниями о том, что углеродистые и легированные стали обладают гораздо меньшим коэффициентом теплопроводности, так как в их составах содержатся примеси, напрямую влияющие на эту величину.

Также следует помнить, что коэффициент данной характеристики сталей очень зависит и от термического воздействия. Это означает, что чем температура выше, тем больше и коэффициент.

Оцените статью: Поделитесь с друзьями!

Теплопроводность

Что такое теплопроводность

В предыдущей главе мы рассматривали явление передачи тепла от одного предмета к другому, явление передачи внутренней энергии. Также внутренняя энергия может передаваться от одной части тела к другому. Если нагреть гвоздь с одного конца, то через некоторое время и другой его конец тоже нагреется.

Итак, теплопроводность — это процесс передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их контакте.

Какой теплопроводностью обладают вещества

Каждый предмет или объект в природе состоит из разного вещества. В каждом веществе молекулы находятся на разном расстоянии между собой. Следовательно, исходя из этого упрощенного варианты, можно прийти к выводу о том, что каждое тело (вещество) обладает разной теплопроводностью.

Если нагреть палку с одной стороны, то через время вторая сторона не нагревается или нагревается очень слабо, но если тот же опыт провести с гвоздем, то через время вторая сторона гвоздя также станет горячей. Можно сделать вывод о том, что дерево обладает малой теплопроводностью, а железо, из которого сделан гвоздь — большой.

Жидкости обладают меньшей теплопроводностью. Самой малой теплопроводностью обладают газы. Ну и почти отсутствует теплопроводность в вакууме, так как в нем расстояние между частицами очень велико. По такому принципу построены термосы, которые могут сохранять температуру внутри продолжительное время. Дело в том, что между стенками термоса откачан воздух и содержится практически вакуум. Из-за этого от одной стенки к другой внутренняя энергия передается очень медленно из-за очень низкой теплопроводности.

Рассмотрим на видеоролике эксперимент теплопроводности для разных сред. Три банки с водой охлаждаются в холодильнике, во льду и в холодной соленой воде со льдом. Какая из трех банок охладится быстрее? В какой среде теплопроводность выше?

Что такое теплопроводность? Обзор

Вариация теплопроводности

Теплопроводность конкретного материала сильно зависит от ряда факторов. К ним относятся температурный градиент, свойства материала и длина пути, по которому следует тепло.

Теплопроводность материалов вокруг нас существенно различается: от материалов с низкой проводимостью, таких как воздух со значением 0,024 Вт / м • К при 0 ° C, до металлов с высокой проводимостью, таких как медь (385 Вт / м • К).

Теплопроводность материалов определяет то, как мы их используем, например, материалы с низкой теплопроводностью отлично подходят для изоляции наших домов и предприятий, в то время как материалы с высокой теплопроводностью идеально подходят для приложений, где необходимо быстро и эффективно отводить тепло из одной области. к другому, например, в кухонных принадлежностях и системах охлаждения в электронных устройствах. Выбирая материалы с теплопроводностью, подходящей для конкретного применения, мы можем достичь наилучших возможных характеристик.

Теплопроводность и температура

Из-за того, что движение молекул является основой теплопроводности, температура материала имеет большое влияние на теплопроводность. Молекулы будут двигаться быстрее при более высоких температурах, и поэтому тепло будет передаваться через материал с большей скоростью. Это означает, что теплопроводность одного и того же образца может резко измениться при повышении или понижении температуры.

Способность понимать влияние температуры на теплопроводность имеет решающее значение для обеспечения ожидаемого поведения продуктов при воздействии термического напряжения. Это особенно важно при работе с продуктами, выделяющими тепло, например электроникой, и при разработке материалов для защиты от огня и тепла.

Теплопроводность и структура

Значения теплопроводности существенно различаются в зависимости от материала и сильно зависят от структуры каждого конкретного материала.Некоторые материалы будут иметь разные значения теплопроводности в зависимости от направления распространения тепла; это анизотропные материалы. В этих случаях тепло легче перемещается в определенном направлении из-за того, как устроена конструкция.

При обсуждении тенденций теплопроводности материалы можно разделить на три категории; газы, неметаллические твердые тела и металлические твердые тела. Различия в способностях этих трех категорий к теплопередаче можно объяснить различиями в их структурах и молекулярных движениях.

Газы имеют более низкую относительную теплопроводность, поскольку их молекулы не так плотно упакованы, как в твердых телах, и поэтому теплопередача сильно зависит от свободного движения молекул и скорости молекул.

Газы — плохой теплопередатчик. Напротив, молекулы в неметаллических твердых телах связаны в сетку решетки, и поэтому теплопроводность в основном происходит за счет колебаний в этих решетках. Непосредственная близость этих молекул по сравнению с молекулами газов означает, что неметаллические твердые тела имеют более высокую теплопроводность по сравнению с двумя, однако в этой группе есть большие различия.

Это изменение частично объясняется количеством воздуха, присутствующего в твердом теле, материалы с большим количеством воздушных карманов являются отличными изоляторами, тогда как те, которые более плотно упакованы, будут иметь более высокое значение теплопроводности.

Теплопроводность металлических твердых тел еще раз отличается от предыдущих примеров. Металлы обладают самой высокой теплопроводностью среди любых материалов, за исключением графена, и обладают уникальной комбинацией теплопроводности и электропроводности.Оба эти атрибута передаются одними и теми же молекулами, и связь между ними объясняется законом Видемана-Франца. Этот закон свидетельствует о том, что при определенной температуре электропроводность будет пропорциональна теплопроводности, однако по мере увеличения температуры теплопроводность материала будет расти, а электропроводность — уменьшаться.

Тестирование и измерение теплопроводности

Теплопроводность — важнейший компонент взаимоотношений между материалами, и способность понимать это позволяет нам добиться наилучших характеристик материалов, которые мы используем во всех аспектах нашей жизни.Эффективное испытание и измерение теплопроводности имеют решающее значение для этих усилий. Методы измерения теплопроводности можно разделить на установившиеся или переходные. Это разграничение является определяющей характеристикой того, как работает каждый метод. Методы установившегося состояния требуют, чтобы образец и образец сравнения находились в тепловом равновесии до начала измерений. Для переходных методов это правило не требуется, поэтому результаты выдаются быстрее.

Исследования

Получение пористой муллитовой керамики с низкой теплопроводностью

В данном исследовании анализируется муллитовая керамика, образованная в результате вспенивания и отверждения крахмала муллитового порошка, а также то, как ее теплопроводность изменяется в зависимости от пористости керамики.Теплопроводность измерялась методом источника переходной плоскости Hot Disc (TPS) с TPS 2500 S. По мере увеличения пористости муллитовой керамики увеличивается и теплопроводность.

Материал с фазовым переходом нанографит / парафин с высокой теплопроводностью

Композиты нанографит (NG) / парафин были приготовлены в качестве композитных материалов с фазовым переходом. Добавление NG увеличило теплопроводность композитного материала. Материал, содержащий 10% НГ, имел теплопроводность 0.9362 Вт / м • K

Артикул:

Нейв Р. Гиперфизика. «Теплопроводность». Государственный университет Джорджии.
Доступно по адресу: http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thercond.html#c1

Материалы курса по неразрушающему контролю. «Теплопроводность». Ресурсный центр по неразрушающему контролю.
Доступно по адресу: https://www.ndeed.org/EducationResources/CommunityCollege/Materials/Physical_Chemical/ThermalConductivity.htm

Уильямс, М. «Что такое теплопроводность?». Phys.Org. 9 декабря 2014 г.
Доступно по адресу: http://phys.org/news/2014-12-what-is-heat-conduction.html

Что вы подразумеваете под теплопроводностью? Получено из определения теплопроводности

Thermtest База данных термических свойств материалов. Список значений теплопроводности

Общие сведения о теплопроводности | Advanced Thermal Solutions

Теплопроводность — это объемное свойство, которое описывает способность материала передавать тепло.В следующем уравнении теплопроводность — это коэффициент пропорциональности k . Расстояние теплопередачи определяется как † x , которое перпендикулярно области A . Скорость передачи тепла через материал составляет Q , от температуры T 1 до температуры T 2 , когда T 1 > T 2 [2].

Рисунок 1.Процесс теплопроводности от горячей (T1) к холодной (T2) поверхности
Теплопроводность материалов играет важную роль в охлаждении электронного оборудования. От кристалла, в котором вырабатывается тепло, до шкафа, в котором размещена электроника, теплопроводность и, как следствие, теплопроводность являются неотъемлемыми компонентами общего процесса управления температурой.

Путь тепла от матрицы к внешней среде — сложный процесс, который необходимо учитывать при разработке теплового решения.В прошлом многие устройства могли работать без внешнего охлаждающего устройства, такого как радиатор. В этих устройствах сопротивление проводимости от кристалла к плате необходимо было оптимизировать, поскольку первичный путь теплопередачи находился в печатной плате. По мере увеличения уровней мощности передача тепла исключительно на плату становилась недостаточной (кредитная шакита). Большая часть тепла теперь рассеивается непосредственно в окружающую среду через верхнюю поверхность компонента. В этих новых более мощных устройствах важно низкое сопротивление перехода к корпусу, а также конструкция присоединенного радиатора.

Чтобы определить важность теплопроводности материала в конкретном приложении управления температурой (например, теплоотвод), важно разделить общее тепловое сопротивление, связанное с кондуктивной теплопередачей, на три части: межфазное сопротивление, сопротивление растеканию и сопротивление проводимости.

  • Интерфейсный материал улучшает тепловой контакт между несовершенными сопрягаемыми поверхностями. Материал с высокой теплопроводностью и хорошей способностью к смачиванию поверхности снижает межфазное сопротивление .
  • Сопротивление растеканию используется для описания теплового сопротивления, связанного с небольшим источником тепла, соединенным с большим радиатором. Среди прочего, теплопроводность основания радиатора напрямую влияет на сопротивление растеканию.
  • Сопротивление проводимости — это мера внутреннего теплового сопротивления в радиаторе, когда тепло перемещается от основания к ребрам, где оно рассеивается в окружающую среду. Что касается конструкции радиатора, сопротивление теплопроводности менее важно в условиях естественной конвекции и низкого расхода воздуха и становится более важным при увеличении расхода.

Общие единицы теплопроводности: Вт / мК и БТЕ / ч-фут — o F.

Рисунок 2. Теплопроводность тонкой пленки кремния [3].

В электронной промышленности постоянное стремление к меньшему размеру и более высокой скорости значительно уменьшило масштаб многих компонентов. Поскольку этот переход теперь продолжается от макро- к микромасштабу, важно учитывать влияние на теплопроводность и не предполагать, что объемные свойства все еще точны.Уравнения Фурье на основе континуума не могут предсказать тепловые характеристики в этих меньших масштабах. Необходимы более полные методы, такие как уравнение переноса Больцмана и решеточный метод Больцмана [3].

Влияние толщины на проводимость показано на рисунке 2. Характеризуемым материалом является кремний, который широко используется в электронике.

Рисунок 2. Теплопроводность тонкой кремниевой пленки [3]

Как и многие другие физические свойства, теплопроводность может быть анизотропной в зависимости от материала (в зависимости от направления).Кристалл и графит — два примера таких материалов. Графит используется в электронной промышленности, где ценна его высокая проводимость в плоскости. Кристаллы графита имеют очень высокую проводимость в плоскости (~ 2000 Вт / мК) из-за прочной связи углерод-углерод в их базисной плоскости. Однако параллельные базисные плоскости слабо связаны друг с другом, и теплопроводность, перпендикулярная этим плоскостям, довольно низкая (~ 10 Вт / мК) [4].

На теплопроводность влияют не только изменения толщины и ориентации; температура также влияет на общую величину.Из-за повышения температуры материала увеличивается внутренняя скорость частиц и увеличивается теплопроводность. Эта увеличенная скорость передает тепло с меньшим сопротивлением. Закон Видемана-Франца описывает это поведение путем соотнесения теплопроводности и электропроводности с температурой. Важно отметить, что влияние температуры на теплопроводность нелинейно, и его трудно предсказать без предварительного исследования. На графиках ниже показано поведение теплопроводности в широком диапазоне температур.Оба этих материала, нитрид алюминия и кремний, широко используются в электронике (рисунки 3 и 4 соответственно).

В будущем более мощные процессоры с несколькими ядрами еще больше подтолкнут потребность в улучшенной теплопроводности. Следовательно, стоит также изучить другие области исследований и разработок в области повышения теплопроводности для существующих материалов, используемых в корпусах электроники. Одной из таких областей является влияние нанотехнологий на теплопроводность, когда углеродные нанотрубки показали значения проводимости, близкие к проводимости алмаза из-за большой длины свободного пробега фононов [7].Разработка новых материалов и улучшение существующих материалов приведет к более эффективному управлению температурным режимом, поскольку рассеиваемая мощность устройств постоянно растет.

Артикул:

1. Теплопроводность, Американский научный словарь наследия, Houghton Mifflin Company

2. Моран М., Шапиро Х. Основы инженерной термодинамики, стр. 47, 1988 г.

3. Гай С., Ким В., Чанг П., Амон К., Джон М., Анизотропная теплопроводность наноразмерных ограниченных тонких пленок через решетку Больцмана, Химическая инженерия, Университет Карнеги-Меллон, ноябрь 2006 г., стр.2006

4. Норли Дж., Роль природного графита в охлаждении электроники, Охлаждение электроники, август 2001 г.

5. Слак, Г.А., Танзилли Р.А., Поль Р.О., Вандерсанде Дж. В., Дж. Phys. Chem. Твердые тела 48, 7 (1987), 641-647

6. Глассбреннер, К. и Слак, Г., Теплопроводность кремния и германия от 3 ° К до точки плавления, Physical Review 134, 4A, 1964

7. Бербер, С., Квон, Ю., Томанек, Д., Необычно высокая теплопроводность углеродных нанотрубок, Physical Review Letters, Том 84, № 20, стр. 4613-4616, 2000 г.

Что такое теплопроводность? — Matmatch

Теплопроводность — это мера способности определенного материала передавать или проводить тепло.Проводимость возникает, когда в материале присутствует температурный градиент. Его единицы равны (Вт / мК) и обозначаются либо λ, либо k.

Второй закон термодинамики определяет, что тепло всегда будет течь от более высокой температуры к более низкой температуре.

Уравнение теплопроводности рассчитывается по следующей формуле:

представляет собой тепловую энергию, передаваемую материалом в единицу времени. Это выражается в джоулях в секунду или в ваттах.

    • k — константа теплопроводности.
    • A — площадь поверхности, через которую проходит тепловая энергия, измеряется в м2.
    • ∆T — разница температур в градусах Кельвина.
    • L означает толщину материала, через который передается тепло, и измеряется в м.
    • Чтобы вычислить константу теплопроводности, можно использовать следующее уравнение:

Теплопроводность конкретного материала зависит от его плотности, влажности, структуры, температуры и давления.

Как это измеряется?

Некоторые распространенные методы измерения теплопроводности:

Метод охраняемой горячей плиты:

Метод защищенной горячей пластины — широко используемый метод установившегося состояния для измерения теплопроводности. Материал, который необходимо протестировать, помещают между горячей и холодной пластинами. Параметры, используемые для расчета теплопроводности, — это установившаяся температура, тепло, используемое для более теплой пластины, и толщина материала.Его можно использовать для температурных диапазонов 80-1500 К, а также для таких материалов, как пластик, стекло и образцы изоляции. Это очень точно, но на проведение теста уходит много времени.

Метод горячей проволоки:

Метод горячей проволоки — это переходный метод, который может использоваться для определения теплопроводности жидкостей, твердых тел и газов. Стандартный метод горячей проволоки, используемый для жидкостей, включает нагретую проволоку, помещаемую в образец. Теплопроводность определяется путем сравнения графика температуры проволоки с логарифмом времени, когда указаны плотность и емкость.

В случае твердых тел требуется небольшая модификация этого метода, при которой горячая проволока опирается на основу так, чтобы твердое тело не проникало внутрь. Он работает в диапазоне температур 298 — 1800 K и является быстрым и точным методом, но имеет ключевое ограничение в том, что он работает только с материалами с низкой проводимостью.

Сравнительный метод резки:

Сравнительный метод отрезного стержня — это метод устойчивого состояния, который может использоваться для испытания металлов, керамики и пластмасс.Тепловой поток проходит через образцы, теплопроводность которых известна и неизвестна, следовательно, можно проводить сравнение температурных градиентов. Он работает в диапазоне температур 293 — 1573 К, но измерения относительно неточны.

Метод лазерной вспышки:

Метод лазерной вспышки — это переходный метод, при котором лазерный импульс передает короткий тепловой импульс на передний конец образца, а изменение температуры измеряется на заднем конце образца.Он работает в диапазоне температур 373 — 3273 К и может использоваться как для твердых, так и для жидкостей. Он имеет преимущество в скорости и высокой точности, но стоит довольно дорого.

Метод теплового расходомера:

Метод измерителя теплового потока — это метод стационарного режима и аналогичен методу с защищенной горячей пластиной, за исключением того, что для измерения теплового потока через образец используются преобразователи теплового потока, а не основной нагреватель. Тепловой поток определяется на основе падения температуры внутри терморезистора.Измерители теплового потока используются в диапазоне температур 373–573 K и могут применяться для пластмасс, керамики, изоляционных материалов и стекла. Основное преимущество расходомеров тепла заключается в том, что они относительно просты в настройке, однако измерения не особенно точны.

Какие материалы имеют самую высокую / самую низкую теплопроводность?

Как и ожидалось, материалы, которые хорошо проводят тепло, такие как металлы, имеют более высокую константу теплопроводности, чем материалы, которые не проводят тепло так эффективно, как полимеры и дерево.

В группе металлов серебро имеет самую высокую константу теплопроводности, а висмут — самую низкую.

Теплопроводность неметаллических жидкостей намного ниже теплопроводности металлов, а самая низкая теплопроводность наблюдается у газов. Среди газов водород и гелий обладают относительно высокой теплопроводностью.

Какие приложения требуют высокой / низкой теплопроводности?

Материалы с фазовым переходом, используемые для аккумуляторов тепловой энергии, таких как системы отопления и охлаждения, должны иметь высокую теплопроводность для достижения максимальной эффективности, тогда как материалы с низкой теплопроводностью обычно используются для теплоизоляции.

Теплопроводность — выбранные материалы и газы

Теплопроводность — это свойство материала, которое описывает способность проводить тепло. Теплопроводность может быть определена как

«количество тепла, передаваемого через единицу толщины материала — в направлении, нормальном к поверхности единицы площади — из-за градиента единичной температуры в условиях устойчивого состояния»

Теплопроводность единицами являются [Вт / (м · К)] в системе СИ и [БТЕ / (час фут ° F)] в британской системе мер.

См. Также изменения теплопроводности в зависимости от температуры и давления , для: воздуха, аммиака, двуокиси углерода и воды

Теплопроводность для обычных материалов и продуктов:

9032 903 90

листы асбеста

0.58

23

16,3

4 — 0,7

3 9019 903 903 903 903 903 902 903 903 903 9019 903 903

3

203

Стекло, Стекло

320319 0,33

12,6% влажности)

19

9032 9020 9020 9020 .58

903 9019 0,04

203

Оксид

9

9

9

9

9

9 159

0

Калий

903 903 903 902

3 903 9019 0,045 0,13

9032 903

3 903 903 903 902 903

903

903 903 903 9032 9032 902

17

Пенуран

19 Уран021

3

19 0,03

9323 9323 9026 плохо для здоровья человека, когда крошечные абразивные волокна попадают в легкие, где они могут повредить легочную ткань. Это, по-видимому, усугубляется курением сигарет, в результате чего возникают мезотелиома и рак легких.

Пример — кондуктивная теплопередача через алюминиевый бак по сравнению с кастрюлей из нержавеющей стали

Кондуктивная теплопередача через стенку ванны может быть рассчитана как

q = (k / s) A dT (1)

или, альтернативно,

q / A = (к / с) dT

где

q = теплопередача (Вт, БТЕ / ч)

A = площадь поверхности (м 2 , фут 2 )

q / A = теплопередача на единицу площади (Вт / м 2 , Btu / (h ft 2 ))

k = теплопроводность ( Вт / мК, БТЕ / (час фут ° F) )

dT = t 1 — t 2 = разница температур ( o C, o F)

с = толщина стены (м, фут)
9000 5

Калькулятор теплопроводности

k = теплопроводность (Вт / мК, БТЕ / (час фут ° F) )

s = толщина стенки (м, фут)

A = площадь поверхности (м 2 , фут 2 )

dT = t 1 — t 2 = разница температур ( o C, o F)

Примечание! — общая теплопередача через поверхность определяется «общим коэффициентом теплопередачи », который в дополнение к кондуктивной теплопередаче зависит от

Кондуктивная теплопередача через алюминиевую стенку емкости толщиной 2 мм — разность температур 80

o C

Теплопроводность алюминия составляет 215 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(215 Вт / (м · K)) / (2 10 -3 м)] (80 o C)

= 8600000 (Вт / м 2 )

= 8600 (кВт / м 2 )

Кондуктивная теплопередача через стенку емкости из нержавеющей стали толщиной 2 мм — разница температур 80

o C

Теплопроводность нержавеющей стали 17 Вт / (м · К) (из таблицы выше).Кондуктивная теплопередача на единицу площади может быть рассчитана как

q / A = [(17 Вт / (м · K)) / (2 10 -3 м) ] (80 o C)

= 680000 (Вт / м 2 )

= 680 (кВт / м 2 )

Что такое испытание на теплопроводность?

Теплопроводность — это фундаментальное свойство материала, связанное с легкостью, с которой тепловая энергия передается через конкретный материал.Материалы, которые легко проводят тепло с небольшим наложенным температурным градиентом, имеют более высокую теплопроводность, чем материалы, которые более устойчивы (с большей изоляцией) к потоку тепла. Точное знание теплопроводности материала необходимо для прогнозирования теплопередачи за счет теплопроводности.

Теплопроводность — это чистое свойство материала, не зависящее от площади проводимости или толщины материала. ASTM D5470 стандартизирует метод двустороннего, одномерного теплового потока для измерения теплопроводности, так что полученные данные будут отражать только свойства материала без учета конкретного используемого испытательного оборудования.

ASTM D5470 рассматривает теплопроводность «тонких» материалов, которые часто называют «материалами с термоинтерфейсом». «Тонкие» материалы — это примерно те материалы, которые имеют толщину менее 1-2 см. Этот метод определяет теплопроводность как отношение теплового потока к соответствующему градиенту температуры в условиях одномерной теплопроводности. Это измерение можно представить как теплопроводность между двумя параллельными изотермическими поверхностями площадью A при температурах T H и T C , разделенных слоем испытуемого материала толщиной X с установившейся мощностью Q .Теплопроводность k , таким образом, определяется как

.

k = Q * X / ((T H — T C ) * A)

Самыми популярными единицами измерения теплопроводности являются ватт / метр Кельвина (Вт / мК). Термическое сопротивление просто определяется как величина, обратная теплопроводности. Альтернативное выражение для k может быть получено с использованием термического сопротивления R образца материала между параллельными горячей и холодной поверхностями, определяемого:

R = (T H — T C ) / Q

Объединение этих значений дает более простую форму определения теплопроводности:

k = X / (R * A)

Часто материалы для термоинтерфейса поставляются в листах номинальной толщины, где спецификации теплопроводности для материала представлены в форме RA , а не k .Для этих ситуаций

RA = X / k

Теплопроводность — это свойство материала, которое не зависит от какого-либо конкретного применения, поскольку свойства материала в идеале «не зависят от применения». Когда конкретный материал реализуется в качестве термоинтерфейса в приложении для электронной упаковки, влияние материала на общие тепловые характеристики собранного корпуса зависит от многих технических деталей, только одна из которых — проводимость интерфейсного материала.Такие вопросы, как геометрия конструкции, поверхностные контактные сопротивления и тепловое сопротивление других элементов в сборке, имеют решающее значение при оценке общих тепловых характеристик любого конкретного приложения для упаковки электроники. С этой целью программа Analysis Tech Semiconductor Thermal Testing может определить общее тепловое сопротивление упакованного полупроводникового устройства в зависимости от типа используемого материала термоинтерфейса.

Теплопроводность: определение, уравнение и расчет — видео и стенограмма урока

Коэффициент теплопроводности

Ключевой частью уравнения теплопроводности Фурье является коэффициент теплопроводности, или k , материала.Коэффициент теплопроводности материала рассчитывается с использованием того же уравнения, перемещая переменные, пока мы не выделим k с одной стороны. Это дает нам уравнение коэффициента теплопроводности:

Теплопроводность
k —
Вт / (м · К)
Материал / вещество Температура
25 o C
(77 o F)

3 125 o o
(257 o F)

225 o C
(437 o F)
Ацетали 0.23
Ацетон 0,16
Ацетилен (газ) 0,018
Акрил Воздух 0,2 0,0333 0,0398
Воздух, высота 10000 м 0,020
Агат 10,9
Спирт 0.17
Глинозем 36 26
Алюминий
Алюминий Латунь 121 9019 902 902 902 902 902 902 902 902 902 (газ) 0,0249 0,0369 0,0528
Сурьма 18,5
Яблоко (85.6% влаги) 0,39
Аргон (газ) 0,016
Плита асбестоцементная 1) 0,744
0,166
Асбестоцемент 1) 2,07
Асбест в сыпучей упаковке 1) 0.15
Асбестовая плита 1) 0,14
Асфальт 0,75

Слои битума / войлока 0,5
Говядина постная (влажность 78,9%) 0.43 — 0,48
Бензол 0,16
Бериллий
Висмут 8,1 9026 9020 9020 9020 9020

(газ) 0,02
Весы котла 1,2 — 3,5
Бор 25
Латунь

0 — 0,20

Кирпич плотный 1,31
Кирпич огнеупорный 0,47
Кирпич изоляционный 0,15

Кирпич изоляционный 0,15 903 ) 0,6 -1,0
Кирпичная кладка плотная 1,6
Бром (газ) 0,004
9032 9032 Коричневая бронза

9019 Бронза
Сливочное масло (влажность 15%) 0,20
Кадмий
Силикат кальция 0,05 903 902 9027 Углерод

Углекислый газ (газ) 0,0146
Окись углерода 0,0232
Чугун 9019 целлюлоза и регенерированная древесина

Ацетат целлюлозы, формованный, лист

0,17 — 0,33
Нитрат целлюлозы, целлулоид 0,12 — 0,21
Цемент, строительный раствор 1,73
Керамические материалы
Мел 0.09
Древесный уголь 0,084
Хлорированный полиэфир 0,13
Хлор Сталь (газ) 903 903
Хром
Хромоксид 0,42
Глина от сухой до влажной 0.15 — 1,8
Глина насыщенная 0,6 — 2,5
Уголь 0,2
9032 903 903 содержание) 0,54
Кокс 0,184
Бетон легкий 0,1 — 0,3
Бетон средний
Бетон, плотный 1,0 — 1,8
Бетон, камень 1,7
Константан 903 903 903 903

902

Кориан (керамический наполнитель) 1,06
Пробковая плита 0,043
Пробка повторно гранулированная 0.044
Пробка 0,07
Хлопок 0,04
Хлопковая вата 0,029 9019 9019 0,029 Сталь Углеродистая

9019 9027 0,029
Мельхиор 30% 30
Алмаз 1000
0 Диатомовая земля (Sil-o-Cel19)06
Диатомит 0,12
Дуралий
Земля, сухая 1,5 11,6
Моторное масло 0,15
Этан (газ) 0.018
Эфир 0,14
Этилен (газ) 0,017
Эпоксидная смола 0,35

9020

9026

Перья 0,034
Войлок 0,04
Стекловолокно 0.04
Фиброволоконная изоляционная плита 0,048
Фиброволокнистая плита 0,2
Кирпич огнеупорный глиняный 500 903 903 9032 o20 9013 903 903 903 9019 9013 Фтор (газ) 0,0254
Пеностекло 0,045
Дихлордифторметан R-12 (газ) 0.007
Дихлордифторметан R-12 (жидкий) 0,09
Бензин 0,15
0,18
Стекло, жемчуг, насыщенный 0,76
Стекло, окно 0.96
Стекловолокно Изоляция 0,04
Глицерин 0,28
Золото

9027

Графит 168
Гравий 0,7
Земля или почва, очень влажная зона 1.4
Земля или почва, влажная зона 1,0
Земля или почва, сухая зона 0,5
Земля или почва, очень сухая зона
Гипсокартон 0,17
Волос 0,05
ДВП высокой плотности 0.15
Твердая древесина (дуб, клен …) 0,16
Hastelloy C 12
Гелий (газ) 0,5
Соляная кислота (газ) 0,013
Водород (газ) 0,168
0.013
Лед (0 o C, 32 o F) 2,18
Инконель 15
Изоляционные материалы 0,035 — 0,16
Йод 0,44
Иридий 147 903
Капоковая изоляция 0,034
Керосин 0,15
Криптон (газ) 0,003 9032 9032 9032 9032 903 903 903 902 , сухой 0,14
Известняк 1,26 — 1,33
Литий
Магнезиальная изоляция (85%)07
Магнезит 4,15
Магний
Магниевый сплав 70-145 903 903

902

Ртуть, жидкость
Метан (газ) 0,030
Метанол 0.21
Слюда 0,71
Молоко 0,53
Изоляционные материалы из минеральной ваты, шерстяные покрывала 903 903 9019 0,04

201

Монель
Неон (газ) 0,046
Неопрен 0.05
Никель
Оксид азота (газ) 0,0238
Азот (газ) 0,024
Нейлон 6, Нейлон 6/6 0,25
Масло для машинной смазки SAE 50 0,15
Оливковое масло 017
Кислород (газ) 0,024
Палладий 70,9
Бумага 0,05

Торф 0,08
Перлит, атмосферное давление 0,031
Перлит, вакуум 0.00137
Фенольные литые смолы 0,15
Формовочные смеси фенол-формальдегид 0,13 — 0,25
Пек 0,13
Карьерный уголь 0.24
Штукатурка светлая 0,2
Штукатурка, металлическая планка 0,47
Штукатурка песочная 0,71
Пластилин 0,65 — 0,8
Пластмассы вспененные (изоляционные материалы) 0.03
Платина
Плутоний
Фанера 0,13 9019 903 9019 903 903 903 9019 9019 902

Полиэтилен низкой плотности, PEL 0,33
Полиэтилен высокой плотности, PEH 0.42 — 0,51
Полиизопрен натуральный каучук 0,13
Полиизопреновый каучук 0,16
Полиметилметакрилат

,23

,25 0,1 — 0,22

Полистирол вспененный 0,03
Полистирол 0.043
Пенополиуритан 0,03
Фарфор 1,5
Калий 1
Пропан (газ) 0,015
Политетрафторэтилен (ПТФЭ) 0,25
Поливинилхлорид, ПВХ 0.19
Стекло Pyrex 1.005
Кварц минеральный 3
Радон (газ) 0,0033 903 903 9032 9032 903 903 903 903 9032 9032

Рений
Родий
Порода, твердая 2-7
Порода, порода 19.5 — 2,5
Изоляция из минеральной ваты 0,045
Канифоль 0,32
Резина, ячеистая
Рубидий
Лосось (влажность 73%) 0,50
Песок сухой 0.15 — 0,25
Песок влажный 0,25 — 2
Песок насыщенный 2-4
9019 9019 9019 9019 903

Опилки 0,08
Селен
Овечья шерсть 0,039
Аэрогель кремнезема02
Силиконовая литьевая смола 0,15 — 0,32
Карбид кремния 120
Силиконовое масло
Шлаковая вата 0,042
Сланец 2,01
Снег (температура <0 o C) 0.05 — 0,25
Натрий
Хвойные породы (пихта, сосна ..) 0,12
Почва, глина 1,1 материя 0,15 — 2
Грунт, насыщенный 0,6 — 4

Припой 50-50

50
  • 0.07
  • Пар, насыщенный

    0,0184
    Пар низкого давления 0,0188
    Сталь
    Сталь, нержавеющая
    Изоляция из соломенных плит, сжатая 0,09
    Пенополистирол 0.033
    Двуокись серы (газ) 0,0086
    Сера кристаллическая 0,2
    Сахар 0,02087
    Гудрон 0,19
    Теллур 4,9
    Торий
    Древесина, ольха
    Древесина, ясень 0,16
    Лес, береза ​​ 0,14
    Древесина, лиственница 0,12 903 903

    Древесина дубовая 0,17
    Древесина осина 0,14
    Древесина осина 0.19
    Древесина, бук красный 0,14
    Древесина, сосна красная 0,15
    Древесина, сосна белая 9032

    Древесина, сосна белая 9032 903

    0,15
    олово
    Титан
    Вольфрам
    Вакуум 0
    Гранулы вермикулита 0,065 903 903 903 903 903 903 903 903 903 903 903 903 902 0,606
    Вода, пар (пар) 0,0267 0,0359
    Пшеничная мука 0.45
    Белый металл 35-70
    Древесина поперек волокон, белая сосна 0,12
    Древесина поперек волокон, балка Древесина поперек волокон, сосна желтая, древесина 0,147
    Дерево, дуб 0,17
    Шерсть, войлок 0.07
    Древесная вата, плита 0,1 — 0,15
    Ксенон (газ) 0,0051
    Цинк 9323 9323 9323 9323

    Те же переменные представляют то же самое из предыдущего уравнения. Используя единицы Джоули / секунды или Ватты для переменных Q / t , единицы метров2 для переменной A , единицы метров в переменной d и единицы Кельвина для переменная ΔT дает нам коэффициент теплопроводности k материала в ваттах на метр-кельвин (Вт / м⋅K).

    Как упоминалось ранее, каждый материал имеет свой коэффициент проводимости. Материалы, которые хорошо проводят тепло, такие как металлы и камни, имеют высокие коэффициенты проводимости, в то время как материалы, которые плохо проводят тепло, такие как дерево и вода, имеют низкие коэффициенты проводимости.

    Расчеты теплопроводности

    Давайте воспользуемся уравнениями, которые мы выучили, для работы на двух примерах. В одном примере мы рассчитаем передачу теплового потока объекта (теплопроводность), а в другом — коэффициент теплопроводности материала.

    Пример 1

    Стена дома имеет площадь 2 м2 и толщину 0,5 м с разницей температур от 293 Кельвина внутри дома до 301 Кельвина вне дома. Материал стен имеет коэффициент теплопроводности 0,5 Вт на метр-Кельвин (Вт / м⋅К). Какова теплопроводность (передача тепла) через материал стены в секунду?

    Во-первых, давайте приведем наше уравнение теплопроводности:

    Теперь, после вставки всех заданных чисел в переменные:

    Это дает нам теплопроводность через материал стенок 16 Дж в секунду или 16 Вт.

    Пример 2

    Теперь давайте на примере найдем коэффициент теплопроводности неизвестного материала. Допустим, у нас есть неизвестный материал, у которого 30 Вт тепла проходит через площадь 2 м2 при толщине 1 м и разность температур, ΔT , 50 К. Подставляя эти числа в наше уравнение для коэффициента теплопередачи проводимость:

    Получаем коэффициент теплопроводности 0.3 Вт / м⋅К

    Краткое содержание урока

    Теплопроводность — это теплопередача между двумя объектами или внутри объекта. Коэффициент теплопроводности , или k , различается для каждого материала и определяет, насколько хороший материал является проводником тепла. Например, материалы, которые очень хорошо проводят тепло, такие как металлы, имеют высокий коэффициент теплопроводности, в то время как материалы, которые не очень хорошо проводят тепло, такие как дерево, имеют низкие коэффициенты теплопроводности. Закон Фурье теплопроводности позволяет нам определить количество теплового потока в материале, а также вычислить коэффициент проводимости неизвестного материала.

    И помните, что тепло всегда течет от более высокой температуры к более низкой температуре. Формула выглядит так:

    , а переменные включают:

    • Q , который представляет перенос тепла во времени, представленный как t
    • k , который представляет собой коэффициент теплопроводности материала
    • A — область, через которую проходит тепло
    • ΔT , которая представляет собой разницу температур между материалами или внутри материала
    • d , толщина материала

    Также важно помнить, что ключевой частью уравнения теплопроводности Фурье является коэффициент теплопроводности материала, или k .Коэффициент теплопроводности материала рассчитывается с использованием того же уравнения, перемещая переменные, пока мы не выделим k с одной стороны. Это дает нам уравнение коэффициента теплопроводности:

    Теплопроводность: определение, единицы, уравнение и пример

    Обновлено 28 декабря 2020 г.

    Автор GAYLE TOWELL

    Когда вы идете по ковру в холодный зимний день, вам не кажется, что ноги мерзнут.Однако стоило вам ступить на кафельный пол в ванной, и ваши ноги мгновенно похолодели. На двух этажах как-то различаются температуры?

    Вы, конечно, не ожидали бы этого, учитывая то, что вы знаете о тепловом равновесии. Так почему же они такие разные? Причина в теплопроводности.

    Теплообмен

    Тепло — это энергия, которая передается между двумя материалами из-за разницы температур. Тепло течет от объекта с более высокой температурой к объекту с более низкой температурой, пока не будет достигнуто тепловое равновесие.Методы передачи тепла включают теплопроводность, конвекцию и излучение.

    Тепловая проводимость — это режим, который более подробно обсуждается далее в этой статье, но вкратце это теплопередача посредством прямого контакта. По сути, молекулы более теплого объекта передают свою энергию молекулам более холодного объекта посредством столкновений, пока оба объекта не достигнут одинаковой температуры.

    В конвекции тепло передается посредством движения. Представьте себе воздух в вашем доме в холодный зимний день.Вы заметили, что большинство обогревателей обычно располагаются около пола? Когда обогреватели нагревают воздух, он расширяется. Когда он расширяется, он становится менее плотным и поднимается над более прохладным воздухом. В этом случае более холодный воздух находится рядом с обогревателем, поэтому воздух может нагреваться, расширяться и т. Д. Этот цикл создает конвекционные потоки и заставляет тепловую энергию рассеиваться по воздуху в комнате, смешивая воздух по мере его нагрева.

    Атомы и молекулы испускают электромагнитное излучение , которое представляет собой форму энергии, которая может перемещаться в космическом вакууме.Вот как тепловая энергия от теплого огня достигает вас, и как тепловая энергия от солнца попадает на Землю.

    Определение теплопроводности

    Теплопроводность — это мера того, насколько легко тепловая энергия проходит через материал или насколько хорошо этот материал может передавать тепло. Насколько хорошо происходит теплопроводность, зависит от тепловых свойств материала.

    Рассмотрим плиточный пол в примере в начале. Это лучший проводник, чем ковер.Вы можете сказать это просто наощупь. Когда ваши ноги стоят на кафельном полу, тепло уходит намного быстрее, чем на ковре. Это связано с тем, что плитка позволяет теплу от ваших ног гораздо быстрее проходить через нее.

    Так же, как удельная теплоемкость и скрытая теплота, проводимость — это свойство, присущее конкретному материалу. Он обозначается греческой буквой κ (каппа) и обычно ищется в таблице. Единицы проводимости в системе СИ — ватт / метр × Кельвин (Вт / мК).

    Объекты с высокой теплопроводностью являются хорошими проводниками, а объекты с низкой теплопроводностью — хорошими изоляторами. Здесь представлена ​​таблица значений теплопроводности.

    Как видите, предметы, которые часто кажутся «холодными» на ощупь, например, металлы, являются хорошими проводниками. Отметим также, насколько хорош воздух изолятор. Вот почему большие пушистые куртки согреют зимой: они задерживают большой слой воздуха вокруг вас. Пенополистирол также является отличным изолятором, поэтому его используют для сохранения тепла или холода в еде и напитках.

    Как тепло перемещается через материал

    По мере того, как тепло распространяется через материал, существует градиент температуры по всему материалу от конца, ближайшего к источнику тепла, к концу, наиболее удаленному от него.

    По мере прохождения тепла через материал и до достижения равновесия конец, ближайший к источнику тепла, будет самым теплым, а температура будет линейно снижаться до самого низкого уровня на дальнем конце. Однако по мере того, как материал приближается к равновесию, этот градиент выравнивается.

    Теплопроводность и тепловое сопротивление

    Насколько хорошо тепло может перемещаться через объект, зависит не только от его проводимости, но и от размера и формы объекта. Представьте себе длинный металлический стержень, проводящий тепло от одного конца к другому. Количество тепловой энергии, которое может пройти за единицу времени, будет зависеть от длины стержня, а также от размера стержня вокруг стержня. Здесь в игру вступает понятие теплопроводности.

    Теплопроводность материала, такого как железный стержень, определяется по формуле:

    C = \ frac {\ kappa A} {L}

    , где A — площадь поперечного сечения материал, L — длина, а κ — теплопроводность.Единицы проводимости в системе СИ — Вт / К (ватт на кельвин). Это позволяет интерпретировать κ как теплопроводность единицы площади на единицу толщины.

    И наоборот, тепловое сопротивление определяется по формуле:

    R = \ frac {L} {\ kappa A}

    Это просто величина, обратная проводимости. Сопротивление — это мера сопротивления проходящей через него тепловой энергии. Термическое сопротивление также определяется как 1 / κ.

    Скорость, с которой тепловая энергия Q перемещается по длине L материала, когда разница температур между концами составляет ΔT , определяется по формуле:

    \ frac {Q } {t} = \ frac {\ kappa A \ Delta T} {L}

    Это также можно записать как:

    \ frac {Q} {t} = C \ Delta T = \ frac {\ Delta T} {R}

    Обратите внимание, что это прямо аналогично тому, что происходит с током при электрической проводимости.В электрической проводимости ток равен напряжению, деленному на электрическое сопротивление. Электропроводность и электрический ток аналогичны теплопроводности и току, напряжение аналогично разнице температур, а электрическое сопротивление аналогично тепловому сопротивлению. Применяется все та же математика.

    Приложения и примеры

    Пример: Полусферическое иглу из льда имеет внутренний радиус 3 м и толщину 0.4 мес. Тепло уходит из иглу со скоростью, зависящей от теплопроводности льда κ = 1,6 Вт / мК. С какой скоростью должна непрерывно генерироваться тепловая энергия внутри иглу, чтобы поддерживать температуру 5 градусов по Цельсию внутри иглу, когда на улице -30 ° C?

    Решение: Правильным уравнением для использования в этой ситуации является уравнение из предыдущего:

    \ frac {Q} {t} = \ frac {\ kappa A \ Delta T} {L}

    Вы учитывая κ, ΔT — это просто разница в температурном диапазоне между внутренней и внешней сторонами, а L — толщина льда.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *